請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37663
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林曉武(Saulwood Lin) | |
dc.contributor.author | Feng-Hsin Hsu | en |
dc.contributor.author | 許鳳心 | zh_TW |
dc.date.accessioned | 2021-06-13T15:37:32Z | - |
dc.date.available | 2008-07-17 | |
dc.date.copyright | 2008-07-17 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-10 | |
dc.identifier.citation | 江政傑 (2005) 台灣西南海域沉積物中持久性有機化合物含量分佈之研究,國立中山大學海洋環境及工程學系研究所碩士論文,109頁。
林曉武 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究-海域地質調查與地球化學探勘(4/4)-硫酸鹽還原在天然氣水合物賦存區之應用與調查,中央地質調查所報告第96-27-E號,93頁。 林殷田 (2001) 長江三角洲與東海陸棚沉積物內有機碳13C同位素之區域分佈與垂直變化,國立台灣大學海洋研究所碩士論文,88頁。 陳儀清 (1997) 台灣西南海外海海床表層沉積現象之研究,國立台灣大學海洋研究所博士論文,160頁。 曾明捷 (1995) 高雄海洋放流海域底質污染物之研究,國立中山大學海洋資源學系研究所碩士論文,98頁。 黃烔賢 (1996) 曾文溪河口近岸沉積物系統之沉積物粒徑分布型態研究,國立中山大學海洋地質及化學研究所碩士論文,94頁。 楊玉皎 (2007) 南台灣近岸海域沉積物的傳輸形態,國立中山大學海洋地質及化學研究所碩士論文,106頁。 Anderson, T.F. and Arthur, M.A. (1983) Stable isotopes of oxygen and carbon and their applications to sedimentologic and paleoenvironmental problems. In:Stable Isotopes in Sedimentary Geology. Arthur, M.A., Anderson, T.F., Kaplan, I.F., Veizer, J., and Land, L.S. (Eds.), Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, pp. 1-151. Berner, R.A. (1982) Burial of organic carbon and pyrite sulfur in the modern ocean:its geochemical and environmental significance. American Journal of Science, 282, 451-473. Berner, R.A. (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeography Palaeoclimatology Palaeocology, 75, 97-122. Boggs S., J.R., Wang, W.C., and Chen, J.C. (1974) Texture and compositional patterns of Taiwan shelf sediment. Acta Oceanographica Taiwanica, 4, 14-56. Boutton, T.W. (1991) Stable carbon isotope ratio of natural materials. In:Carbon Isotope Techniques. Coleman, D.C. and Fry, B.(Eds), Academic Press, San Diego, California, pp. 155-185. Canfield, D.E. (1989) Sulfate reduction and oxic respiration in marine sediments:implication for organic carbon preservation in anoxic environments. Deep-Sea Research, 36, 121-138. Calvert, S.E., Bustin, R.M. and Pederson, T.F. (1992) Lack of evidence for enhanced preservation of sedimentary organic matter in the oxygen minimum of the Gulf of California. Geology, 20, 757-760. Capone, D.J. (1983) Benthic Nitrogen Fixation. In:Nitrogen in the marine environment. Carpenter, E.J. and Capone, D.J. (Eds), Marine Science Research Center, State University of New York, Stony Brook, Academic Press, New York, pp. 105-137. Craig, H., (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Ceochimica et Cosmochimica Acta, 12, 133-149. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, H.-L., Willett, S.D., Hu, J.-C., Horng, M.J., Chen, M.-C., Stark, C.P., Lague, D., and Lin, J.-C. (2003) Links between erosion, runoff variability, and seismicity in the Taiwan orogen. Nature, 426, 143-158. Degens, E. T. (1969) Biogeochemistry of stable carbon isotopes. In:Organic Geochemistry, Eglinton, G. and Murphy, M. T. J. (Eds), Springer-Verlag, New York, Heidelberg, Berlin, pp.304-329. Demaison G.J., and Moore, G.J. (1980) Anoxic environments and oil source bed genesis. Organic. Geochemistry, 2, 9-31. Deines, P. (1980) The isotopic composition of reduced organic carbon. In:Handbook of Environmental Isotope Geochemistry. Vol. 1, The Terrestrial Environment, Part A. Fritz, P. and Fontes, J.(Eds), Elsevier Scientific Publishing Company, New York, pp. 329-406. Descolas-Gros, C., and Fontugne, M.R. (1990) Stable carbon isotope fractionation by marine phytoplankton during photosynthesis. Plant Cell and Environment, 13, 207-218. Dugdale, R., and Goering, J. (1967) Uptake of new and regenerated forms of Nitrogen in primary production. Limnology Oceanography, 12, 196-206. Emerson, S.E., and Hedges, J.I. (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography, 3, 621-634. Faganelli, J., Malej, A., Pezdic, J., and Malacic, V. (1988) C:N:P ratios and stable C isotopic ratios as indicator of sources of organic matter in the Gulf of Trieste (northern Adriatic). Oceanologia Acta,11 , 377-382. Friedman, I. and O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. In:Data of geochemistry. vol. 440, Fleisher M. and Chap K.K. (Eds.), U.S. Geological Survey Professional Paper, pp. 1-12. Gao, J., Wang, Y., Pan, S., Zhang, R., Li, J., and Bai, F. (2007) Source and distribution of organic matter in seabed sediments of the Changjiang river estuary and its adjacent sea area. Acta Geographica Sinica, 62, 981-991. Griggs, G.B. and Johnson, S. (1978) Bottom Sediment Contamination in the Bay of Naples, Italy. Marine Pollution Bulletin, 9, 208-213. Hedges, J.I., and Keil, R.G. (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81-115. Huh, C.-A., Lin, L.-H., Lin, S., and Huang, W.-Y. (accepted in 2007) Modern accumulation rates and a budget of sediment off the Kaoping River, SW Taiwan:a tidal and flood dominated deposition environment around a submarine canyon. Journal of Marine Systems. Kao, S.J., Shiah, F.K., Wang, C.H., and Liu, K.K. (2006) Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan. Continental Shelf Research, 26, 2520-2537. Kendall, C., Silva, S.R., and Kelly, V.J. (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes,15, 1301-1346. Kennicutt, M.C.II, Brooks, J.M., Defreitas, D.A., and Zhu G.H. (1987) Selected organic matter source indicators in the Orinoco, Nile and Changjiang deltas. Organic Geochemistry, 11, 41-51. Lee, T., You, C.F., and Liu, T.K. (1993) Model-dependent 10Be sedimentation rates for the Taiwan Strait and their tectonic significance. Geology, 21, 423-426. Liu, J. T., Liu , K.-J., and Huang, J.-S. (2002) The influence of a submarine canyon on river sediment dispersal and inner shelf sediment movements: a perspective from grain-size distributions. Marine Geology, 181, 357-386. Lyons, W.B., and Gaudette, H.E. (1979) Sulfate reduction and the nature of organic matter in estuarine sediments. Organic Geochemistry, 1, 151-155. Lyons, W.B., Nezat, C.A., Carey, A.E., and Hicks, D.M. (2002) Organic carbon fluxes to the ocean from high-standing islands. Geology, 30, 439-442. Martin, J.H., Knauer, G.A. Karl, D.M.and Broeakow, W.W. (1987) Vertex:Carbon cycling in the northeast Pacific. Deep-Sea Research, 34, 267-285. Meade, R.H., and Parker, R.S. (1985) Sediment in rivers of the United States. National Water Summary 1984-Hydrologic Events, Selected Water Quality Trends, and Groundwater Resources. U.S. Geological Survey Water Supply Paper 2275, pp. 1-467 Meyers P.A., and Eadie, B.J. (1993) Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Organic Geochemistry, 20, 47-56. Milliman, J.D. and Meade, R.H. (1983) World-wide delivery of sediment to the oceans. Journal of Geology, 91, 1-21. Milliman, J.D. and Syvitski, J.P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous river. Journal of Geology, 100, 525-544. Minoura, K., Hoshino, K., Nakamua, T., and Wada, E. (1997) Late Pleistocene-Holocene paleoprouctiontivity circulation in Japan Ses:Sea-level control on δ13C and δ15N records of sediment organic material. Palaeogeography Palaeoclimatology Palaeocology, 135, 41-50. Mishima, Y., Hoshika, A. and Tanimoto, T. (1999) Deposition rates of terrestrial and marine organic carbon in the Osaka Bay, Seto Island Sea, Japan, determined using carbon and nitrogen stable isotope ratios in the sediments. Journal of Oceanography, 55, 1-11. O’Leary, M. H. (1981) Carbon isotope fractionation in plants. Photochemistry, 20, 553-567. O’Leary, M. H. (1988) Carbon isotopes in Photosynthesis. Bioscience, 38, 328-336. Rau, G.H.; Sweeney, R.H., and Kaplan, I.R. (1982) Plankton 13C:12C ratio changes with latitude:Differences between northern and southern oceans. Deep-Sea Research, 29, 1035-1039. Redfield, A. C., Ketchum, B. H. and Richards, F. A. (1963). The influence of organisms on the composition of sea-water. In:The Ssea. Ideas and Observations on Progress in the Study of the Seas. vol. 2. The Composition of Sea-Water. Comparative and Descriptive Oceanography. Hill, M. N. (Eds), Interscience, Wiley, New York, pp. 26-77. Sackett, W.M. and Thompson, R.R., (1963) Isotopic organic carbon composition of recent continental derived clastic sediments of eastern Gulf coast, Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 47, 525-531. Schidlowski, M., (1995) Isotope fractions in the terrestrial carbon cycle:A brief overview. Advances in Space Research, 15, 441-449. Schlünz, B., Schneider, R.R., Muller, P.J., Showers, W.J. and Wefer, G. (1999) Terrestrial organic carbon accumulation on Amazon deep sea fan during the last glacial sea level low sand. Chemical Geology, 159, 263-281. Schlünz, B., and Schneider, R. R. (2000) Transport of terrestrial organic carbon to the oceans by rivers:re-estimating flux- and burial rates. International Journal of Earth Scence, 88, 599-606. Shower, W.J., and Angle, D.G. (1986) Stable isotopic characterization of organic carbon accumulation on the Amazon continental shelf. Continental Shelf Research, 6, 227-244. Smith, B.N. and Epstein, S. (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47, 380-384. Sun, M.-Y., and Wakeham, S.G. (1994) Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea Basin. Geochimica et Cosochimica Acta, 58, 3395-3406. Tai, S.W., and Chung,Y. (1989) Pb-210 in the sediments of Taiwan Straits. Acta Oceanographica Taiwanica, 22, 1-13. Walsh, J. J. (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 53-55. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37663 | - |
dc.description.abstract | 本研究藉由有機碳δ13C值及有機碳/氮莫耳比值作為陸海源示蹤劑,估算陸源有機碳堆積通量,以釐清陸源有機碳經由島嶼型小河川(曾文溪、二仁溪及高屏溪)輸入台灣西南大陸邊緣海域後的傳輸路徑與堆積埋藏之最終宿命。
研究結果顯示台灣西南海域表層沉積物有機碳、有機氮的空間分佈明顯受到曾文溪、二仁溪及高屏溪輸出之陸源顆粒的影響。表層沉積物有機碳、有機氮含量的空間分佈變化呈現由北往南降低的趨勢,且明顯受到沉積物顆粒大小所控制。表層沉積物中有機碳δ13C值大致呈現由近岸往外海變重的趨勢,有機碳/氮莫耳比值亦呈現相似的變化趨勢。近岸陸棚沉積物中有機碳來源主要以陸源為主,特別在曾文溪與高屏溪河口、高屏峽谷內及峽谷中段的兩側陸坡區域可發現較高比例之陸源有機碳的堆積。外海陸坡區域沉積物中有機碳來源則以海源為主。澎湖群島南側陸棚沉積物亦明顯以海源有機碳為主。高雄港北側陸棚沉積物則可能受到污水排放中所含的有機污染物之影響,有機碳δ13C值呈現明顯陸源的特徵。 台灣西南海域的陸源有機碳堆積效益相當低,大部分河川輸出的陸源有機碳並未堆積在本研究區域之陸棚及陸坡內。曾文溪輸出的陸源有機碳只有少部份堆積在河口外圍,而大部份可能被海流帶往其他區域沉積。高屏溪輸出的陸源有機碳則大部份可能直接經由高屏峽谷往深海(南海)傳輸埋藏。 台灣島嶼型小河川輸出之陸源物質並未像其他大陸型大河之輸出多堆積於河口三角洲或近岸陸棚,台灣島嶼型小河川輸出之陸源物質可經由峽谷地形往深海傳輸與埋藏。峽谷對於島嶼型小河川陸源物質往深海之傳輸扮演著相當重要的角色。 | zh_TW |
dc.description.abstract | Huge amount of suspended materials together with organic carbon exported from Kaoping River, Tsengwen River and Erjen River could serve as a major carbon source and may influence biogeochemical carbon cycle in offshore area, southwest of Taiwan. However, little is know concerning fate of this terrestrial organic carbon. This study aims at understanding fate of this terrestrial organic carbon exported to the continental margin, offshore southwestern Taiwan through investigating spatial variations of organic carbon, organic nitrogen, grain size, and organic carbon isotopic compositions in surface sediments to evaluate net terrestrial organic carbon burial flux in the narrow continental shelf settings.
Results show that surface sediments in offshore area, southwest of Taiwan were strongly influenced by terrigenous materials exported from Kaoping River, Tsengwen River and Erjen River. Organic carbon and nitrogen content in surface sediments increased from offshore Penghu island to offshore Kaoping River. Organic carbon and nitrogen content showed strong positive linear relationships with mud content, which indicates that grain size is one important factor in controlling distribution of organic carbon and nitrogen in this study region. The appearance of lighter organic carbon near Kaoping River, Erjen River and Tsengwen River mouth and gradually shifting from lighter at shelf to heavier at slope demonstrated that organic carbon are shifting from terrigenous domination to predominant marine away from the shore. Comparing to those predominantly terrigenous sediments near rivers , sediments offshore Penghu Island are characterized by mostly coarse-grained and biogenic in origin. Offshore Tsengwen and Erjen River are mostly silty to coarse-grained sediments with a major fraction composed of terrigenous sediments. Offshore Kaoping River were dominated by terrigenous fine-grained muddy sediments. In addition, patches of higher organic carbon with lighter isotopic compositions were found offshore north of the Kaoshiung Harbor, probably a result of organic pollutant from sewage outlets. Terrestrial organic carbon burial flux in our study area is 0.063 Mt/yr, which is only 12 % of the total particle organic carbon exported from Kaoping river, Erjen River and Tsengwen River. Higher fraction(>90%) of terrestrial organic carbon occurred in the lower Koaping Canyon indicates that a very important part of the terrestrial organic carbon exported from Kaoping River may transport directly into deep ocean through the Kaoping Canyon. Kaoping Canyon is playing a significant role in transportation and burial of terrestrial organic materials from the Kaoping River to deep ocean. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:37:32Z (GMT). No. of bitstreams: 1 ntu-97-R94241401-1.pdf: 3616828 bytes, checksum: 746a3c4306af2271c51a02cd8dae63bd (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目 錄
口試委員審定書……………………………………………………………i 致謝………………………………………………………………………...ii 中文摘要…………………………………………………………………..iii 英文摘要…………………………………………………………………..iv 目錄………………………………………………………………………...v 圖目錄…………………………………………………………………….vii 表目錄……………………………………………………………………viii 第一章 緒論……………………………………………………………...1 1.1 前言………………………………………………………………1 1.2 沉積物有機碳δ13C值在自然環境的應用…..………………….2 1.2-1 陸域環境……………………………………………….....2 1.2-2 海域環境………………………………………………….4 1.3 沉積物有機碳/氮莫耳比值在自然環境的應用….......................5 1.4 研究區域…………………………………………………………6 1.5 研究目的…………………………………………………………6 第二章 樣品採集與實驗方法………………………………………….10 2.1 樣品採集………………………………………………………..10 2.1-1 採樣區域與測站位置…………………………………...10 2.1-2 沉積物採樣方法………………………………………...10 2.2 樣品前處理……………………………………………………..11 2.3 分析方法與實驗流程…………………………………………..11 2.3-1顆粒粒徑大小分析………………………………………11 2.3-2 有機碳、有機氮含量分析……………………………….12 2-3.3 總碳含量分析…………………………………………...13 2-3.4 碳酸鈣含量分析…………………………………….......14 2-3.5有機碳δ13C值分析………………………………………14 第三章 研究結果……………………………………………………….27 3.1 台灣西南海域表層沉積物含泥量之空間分佈………………..27 3.2 台灣西南海域表層沉積物碳酸鈣之空間分佈………………..28 3.3 台灣西南海域表層沉積物有機碳之空間分佈………………..28 3.4 台灣西南海域表層沉積物有機氮之空間分佈………………..29 3.5 台灣西南海域表層沉積物有機碳/氮莫耳比值之空間分佈….30 3.6 台灣西南海域表層沉積物有機碳13C同位素值之空間分佈…31 第四章 討論…………………………………………………………….38 4.1 影響表層沉積物中有機碳來源組成及含量之差異的因素…..38 4.2 台灣西南海域表層沉積物中有機碳來源組成及含量空間之分佈變化及其控制因素………………………………………….40 4.3 陸海源有機碳混合模式………………………………………..46 4.4 海域陸源有機碳的堆積埋藏…………………………………..50 第五章 結論…………………………………………………………….62 參考文獻…………………………………………………………………64 | |
dc.language.iso | zh-TW | |
dc.title | 台灣西南海域陸源有機碳沉降受鄰近島嶼型河川顆粒傳輸影響之研究 | zh_TW |
dc.title | Deposition of Terrestrial Organic Materials from Small Mountainous Rivers on the Narrow Continental Shelf, Southwest of Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 汪中和(Chung-Ho Wang),溫良碩(Liang-Saw Wen),劉祖乾(James T. Liu) | |
dc.subject.keyword | 島嶼型河川,陸源有機碳,高屏峽谷, | zh_TW |
dc.subject.keyword | Mountainous River,Terrestrial Organic Carbon,Kaoping Canyon, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。