Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37619
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇
dc.contributor.authorI-Jen Wuen
dc.contributor.author吳奕箴zh_TW
dc.date.accessioned2021-06-13T15:35:14Z-
dc.date.available2009-07-14
dc.date.copyright2008-07-14
dc.date.issued2008
dc.date.submitted2008-07-11
dc.identifier.citationBibliography
[1] S. Iijima, Nature (London) 354, 56 (1991).
[2] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of Carbon
Nanotubes(Imperial College, London, 1998).
[3] G. Y. Guo, K. C. Chu, D. S. Wang, and C. G. Duan, Phys.Rev. B 69, 205416 (2004).
[4] G. Y. Guo, K. C. Chu, D. S. Wang, and C. G. Duan, Comput. Matter. Sci. 30, 269
(2004).
[5] G. Y. Guo, J. C. Lin, Phys. Rev. B 71, 165402 (2005).
[6] A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5801 (1994).
[7] M. Zhao, Y. Y. Xia, D. J. Zhang and L. M. Mei, Phys. Rev. B 68, 235415 (2003).
[8] S. M. Lee, Y. H. Lee, Y. G. Hwang, J. Elsner, D. Porezag, and Th. Frauenheim,
Phys. Rev. B 60, 7788 (1999).
[9] von M unch, in Landolt-B ornstein, edited by O. Madelung, M. Schulz, and H. Weiss,
New Series, Groups IV and III-V, Vol. 17, Pt. A (Springer, Berlin, 1982).
[10] R. W. G. Wycko , Crystal Structures (Wiley, New York, 1963).
[11] P. A. Ivanov and V. E. Chelnokov, Semicond. Sci. Technol. 7, 863 (1992).
[12] C. Persson and U. Lindefelt, J. App. Phys. 82, 5496, (1997)
[13] R. Wang, D. Zhang, C. Liu, Chemical Phys. Lett. 411, 333, (2005).
[14] R. Rurali, P. Godigonon, J. Rebollo, E. Hernandez, and P. Ordejon, Appl. Phys.
Lett. 82, 4298 (2003).
[15] C. H. Park, B. H. Cheong, K. H. Lee, and K.J. Chang, Phys. Rev. B 49, 4485,
(1994)
[16] Properties of Silicon Carbide edited by G. L. Harris (INSPEC, Institution of Electrical
Engineers, London,1995)
[17] X.-H. Sun, C.-P. Li, W.-K. Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, and B.-K. Teo,
J. Am. Chem. Soc. 124, 14464 (2002).
[18] L. Z. Pei, Y. H. Tang, Y. W. Chen, C. Guo, X. X. Li, Y. Yuan, and Y. Zhang, J.
Appl. Phys. 99, 114306 (2006).
[19] L. Z. Pei,Y. H. Tang, X. Q.Zhao, Y. W. Chen and C. Guo, J. App. Phys. 100,
046105 (2006).
[20] M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, Phys.
Rev. B 69, 115322 (2004).
[21] M. Zhao, Y. Xia, F. Li, R. Q. Zhang and S. T. Lee, Phys.Rev. B 71, 085312 (2005).
[22] A. Mavrandonakis, G. E. Froudakis, M. Schnell, and Muhlhauser, Nano Lett. 3,
1481 (2004).
[23] Y. Miyamoto and B. D. Yu, Appl. Phys. Lett. 80, 586 (2002).
[24] M. Zhao, Y. Xia, R. Q. Zhang, and S. T. Lee, J. Chem. Phys. 122, 214707 (2005).
[25] A. Gali, Phys. Rev. B 73, 245415 (2006).
[26] R. M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer,
Berlin,1990)
[27] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford
University Press, New York,1989)
[28] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (MacMillan, New York,
1982)
[29] P. Hohenberg and W. Cohn, Phys. Rev. 136 B864 (1964)
[30] P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin,1993)
[31] I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, 1974)
[32] J. P. Perdew and Y. Wang, Phys. Rev. B 45 13244 (1992)
[33] J. P. Perdew and A. Zunger, Phys. Rev. B 23 5048 (1981)
[34] K. Burke, J. P. Perdew and D. C. Langreth, Phys. Rev. Lett. 73 1283 (1994)
[35] S. Kummel, and J. P. Perdew, Phys. Rev. Lett. 90 043004 (2003)
[36] A. D. Becke, J. Chem. Phys. 109 2092 (1998)
[37] A. D. Becke, J. Chem. Phys. 104 1040 (1996)
[38] E. I. Proynov, S.Sirois, and D. R. Salahub, Int. J. Quantum Chem. 64 427 (1997)
[39] W. Kohn and L. J. Sham, Phys. Rev. 140 A1133 (1965)
[40] W. Hanke and L. J. Sham, Phys. Rev. B 21 4656 (1980)
[41] M. Lein, E. U. Gross and J. P. Perdew, Phys. Rev. B 61 13431 (2000)
[42] M. Seidl, J. P. Perdew and S. Kurth, Phys. Rev. Lett. 84 5070 (2000)
[43] E. Engel et al., Phys. Rev. A. 52 2750 (1995)
[44] L. J. Sham and M. Schl uter, Phys. Rev. Lett. 51 1888 (1983)
[45] C. F. Fischer, The Hartree-Fock Method for Atoms (Wiley, New York, 1977)
[46] Richard M. Martin, Electronic Structure: basic theory and practical methods
(Cambridge University Press 2004)
[47] Michael P. Marder, Condensed Matter Physics (John Wiley Press 2000)
[48] John C. Slater, Symmetry and Energy Bands in Crystals (Dover Press 1972)
[49] Singh, D. J.,Planewaves, Pseudopotentials, and the APW Method (Kluwer Academic
Publisher, Boston, 1994)
[50] Holzwarth, N. A. W., Tackett, A. R., Matthews, and G. E., Comp. Phys. Commun.
135, 329 (2001)
[51] M. S. Hyberstein, S. G. Louie, Phys. Rev. B 34, 5390 (1986)
[52] M. S. Hybersten, S. G. Louie, Phys. Rev. B. 62, 4927 (2000)
[53] L. Hedin, Phys. Rev. 139, A796 (1965)
[54] E. Salpeter, H. Bethe, Phys. Rev. 84, 1232 (1951)
[55] Giovanni Onida, Lucia Reining, and Angel Rubio, Rev. of Modern phys. 74, 601
(2002)
[56] Giovanni Onida, Lucia Reining, R. W. Godby, R.Del Sole, and W. Andreoni, Phys.
Rev. Lett. 75, 818 (1995)
[57] S. Albrecht, Lucia Reining, R. Del Sole, and Giovanni Onida, Phys. Rev. Lett. 80,
4510 (1998)
[58] P. E. Blochl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, ibid. 59,
1758 (1999).
[59] G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993); 49, 14251 (1994); G.
Kresse and J. Furthm uller, Comput. Mater. Sci. 6, 15 (1996).
[60] B. Adolph, J. Furthm uller, and F. Bechstedt, Phys. Rev. B 63, 125108 (2001).
[61] S. Okada, S. Saito, and A. Oshiyama, Phys. Rev. B 65, 165410 (2002).
[62] X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).
[63] S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Wiesman,
Science 298, 2361 (2002).
[64] Z.M. Li, Z.K. Tang, H.J. Liu, N. Wang, C.T. Chan, R. Saito, S. Okada, G.D. Li,
J.S. Chen, N. Nagasawa and S. Tsuda, Phys. Rev. Lett. 87, 127401 (2001).
[65] H. Ajiki and T. Ando, Physica B 201, 349 (1994); Jpn. J. Appl. Phys., Suppl. 34,
107 (1995).
[66] L. Benedict, S. Louie, and M. Cohen, Phys. Rev. B 52, 8541 (1994).
[67] A.G. Marinopoulos, L. Reining, A. Rubio, and N. Vast, Phys. Rev. Lett. 91, 46402
(2003).
[68] B. Kozinsky and N. Marzari, Phys. Rev. Lett. 96, 166801 (2006).
[69] G. Y. Guo, S. Ishibashi, T. Tamura and K. Terakura, Phys. Rev. B (in press)
(2007); arXiv: cond-mat/0702521.
[70] A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, and L. Reining,
Appl. Phys. A 78, 1157 (2004).
[71] N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie,
and A. Zettle, Science 28, 335 (1994).
[72] Semiconductors: Physics of Group IV Elements and III-V Compounds, edited by
K.-H. Hellwege and O. Madelung, Landolt-B ornstein, New Series, Group III, Vol. 17,
Pt. a (Springer-Verlag, Berlin,1982).
[73] S. M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc, and M. B. Nardelli,
Phys. Rev. B 67, 235406 (2003).
[74] I. J. Wu, and G. Y. Guo, Phys. Rev. B 76, 035343 (2007).
[75] C.-G. Duan, J. Li, Z.-Q. Gu, and D.-S. Wang, Phys. Rev. B 60, 9435 (1999).
[76] Ed. Ghahramani, D.J. Moss and J.E. Sipe, Phys. Rev. Lett. 64, 2815 (1990); ibid,
Phys. Rev. B 43, 8990 (1991).
[77] J. L. P. Hughes, and J. E. Sipe, Phys. Rev. B 53, 10751 (1996).
[78] N. W. Jepps, and T. F. Page, Progr. Cryst. Growth Charact. 7, 259 (1983).
[79] F. Bechstedt, P. K ackell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsten, and J.
Furthm uller, Phys. Stat. Sol. (b) 202, 35 (1997).
[80] B. Wenzien, P. K ackell, F. Bechstedt, and G. Cappellini, Phys. Rev. B 52, 10897
(1995).
[81] R. W. Boyd, Nonlinear Optics (Elsevier, Amsterdam, 2003).
[82] B. Adolph, and F. Bechstedt, Phys. Rev. B 62, 1706 (2000).
[83] D. A. Kleinmam, Phys. Rev. 126, 1977 (1962).
[84] S. N. Rashkeev, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 57, 9705 (1998).
[85] J. Chen, Z. H. Levine, and J. W. Wilkins, Phys. Rev. B 50, 11514 (1994).
[86] P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson App.
Phys. lett. 66, 1883 (1995).
[87] S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, App.
Phys. lett. 75, 618 (1999).
[88] F. Bechstedt, K. Tenelsen, B. Adolph, and R. Del Sole, Phys. Rev. Lett. 78, 1528
(1997).
[89] Murilo L. Tiago, John E. Northrup, and Steven G. Louie, Phys. Rev. B 67, 115212
(2003).
[90] Murilo L. Tiago, Michael Rohl ng, and Steven G. Louie, Phys. Rev. B 70, 193204
(2004).
[91] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and Steven G. Louie, Appl. Phys.
A 78, 1129 (2004).
[92] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and Steven G. Louie, Phys. Rev.
Lett. 92, 077402 (2004).
[93] Charles kittel, Introduction to Solid State Physics (Wiley, New York, 1996)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37619-
dc.description.abstract中文摘要
碳矽塊材為硬度高的材料之一,其元件適合於高壓高頻環境下工作。這些性質是源自於量子效應,我們猜測其奈米結構可能有更新的现象,此論文的目的是用第一原理去了解其光學性質。單層的碳矽奈米管分成zigzag, armchair, chiral,可視為石墨狀的單層碳矽平面捲繞而成。我們運用密度泛函理論中的局域密度近似研究其能帶結構和光學介電函數,並且用此理論預測出穩定的原子結構。發現碳矽奈米管除了極小的(3,0)(4,0)是金屬外,其餘都是半導體。更進一步地說,zigzag型式碳矽管的能隙會隨著其直徑變小而趨近於零。但當直徑大於20 Å時,碳矽管能隙則趨向於單層碳矽平面的能隙。再者,當電場平行於管軸時,介電函數虛部的頻譜約在3eV會出現明顯的尖峰。所有的碳矽管在高能量範圍(6eV以上)會出現較寬的信號。然而,對於小直徑的碳矽管像是(4,2)(4,4)的光譜,會不同於大管徑的光譜。當電場垂直管軸時,除了(4,4)(3,0)(4,0)外,其餘的碳矽管分別在3eV和6eV會有信號產生並且其強度約是電場平行於管軸時的一半。
接著我們研究其碳矽管及單層碳矽平面和2H,4H,6H和3C塊材的非線性光學的性質,方法也是基於密度泛函理論中的局域密度近似。爾後發現zigzag和chiral 的碳矽管有比碳矽塊材大約十倍的非線性光學係數,且比氮硼奈米管大約十三倍。此現象或許使碳矽管成為光電材料的另選擇。在低維度下的材料考慮多體效應可修正其光譜圖,因此我們基於激發子所產生的影響而刊出初步的結果。
zh_TW
dc.description.abstractAbstract
Silicon carbide in bulk form is one of the hardest material materials and is suitable for electronic devices operated in extreme environments. Silicon carbide with its wide
band gap, high thermal conductivity, and radiation resistance, is important for usage in high-temperature, high-pressure environments. It is reasonable to predict that the novel properties of bulk SiC due to quantum size e ects would also reflect in silicon carbide nanostrctures. The band structure and optical dielectric function of single-walled zigzag, armchair, and chiral silicon carbide nanotubes (SiC-NTs) as well as the single
honeycomb SiC sheet have been calculated within density-functional theory in the local-density
approximation. The underlying atomic structure of the SiC-NTs is determined
theoretically. These findings indicate that all the SiC nanotubes are semiconductors, except the ultrasmall (3,0) and (4,0) zigzag tubes which are metallic. Moreover, the
energy band gap of the zigzag SiC-NTs which is direct, may be reduced from that of the
SiC sheet to zero by reducing the diameter, and the band gap for all the SiC nanotubes with a diameter larger than 20 A is almost independent of diameter. For the electric
field parallel to the tube axis (E
en
dc.description.abstractz), the epsilon for all the SiC-NTs with a moderate
diameter (say, D > 8 A) in the low-energy region(0-6 eV) consists of a single distinct
peak at ~3 eV.
However, for the small diameter SiC nanotubes such as the (4,2),(4,4) SiC-NTs,
the epsilon spectrum does deviate markedly from this general behavior. In the high-energy
region(from 6 eV upwards), the epsilon for all the SiC-NTs exhibit a broad peak centered at ~7 eV. For E perpendicular to z, the epsilon spectrum of all the SiC-NTs except the (4,4), (3,0) and (4,0) nanotubes, in the low energy region also consists of a pronounced peak at around
3 eV while in the high-energy region is roughly made up of a broad hump starting from 6 eV. The magnitude of the peaks is in general about one-half of the magnitude of the
corresponding ones for E
en
dc.description.abstractz, showing a moderate optical anisotropy in the SiC-NTs.
Subsequently, the second-order nonlinear optical susceptibility (chi^(2)_(abc)) and linear electro-optical
coefficient (r_(abc)) of a large number of single-walled zigzag, armchair and chiral
SiC nanotubes (SiC-NTs) as well as bulk SiC polytypes (2H-, 4H-, 6H- and 3C-SiC)
and single graphitic SiC sheet have been calculated from first-principles. The calculations
are also based on local density approximation. It is found that both the zigzag and chiral SiC-NTs exhibit large second-order nonlinear optical behavior with the chi^(2)_(abc)
and r_(abc) coefficients being up to ten-times larger than that of bulk SiC polytypes, and
also being up to thirteen-times larger than the counterparts of the corresponding BNNTs.
Furthermore, the phenomena indicate that SiC-NTs are promising materials for
nonlinear optical and opto-electric applications.
Many body effects modify the optical properties of low dimensional systems. Therefore,
we demonstrate preliminary results of the silicon carbide bulk and SiC-NTs(3,3)(5,5),
which are based on Green's function approach and electron-hole interaction effects. Excitonic
effects modify the optical spectra of SiC-NTs(3,3)(5,5). The epsilon_z for SiC-NTs(3,3)
exhibit a sharp peak centered at 2.05 eV and 5.25 eV, and the epsilon_z for SiC-NTs(5,5)
exhibit a sharp peak centered at 1.05 eV and 2.95 eV. These large many-body effects will dominate the optical responses, and explain the discrepancies between theories and experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:35:14Z (GMT). No. of bitstreams: 1
ntu-97-D91222025-1.pdf: 2150969 bytes, checksum: 09a0962346f2b9f30a6e5913c086c813 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
1 Introduction 8
2 Theory and computation method 10
2.1 Fundamental of the density functional theory . . . . . . . . . . . . . . . 10
2.2 Derivation of Kohn-Sham equation . . . . . . . . . . . . . . . . . . . . . 12
2.3 Introduction to projector augmented waves method . . . . . . . . . . . . 15
2.4 Single particle approximation to the linear optical properties . . . . . . . 17
2.5 Single particle approximation to the nonlinear optical properties . . . . . 21
2.6 Excited state calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Hedin's equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 The procedure of solving Bethe-Salpeter equation . . . . . . . . . . . . . 34
3 Band structures and linear optical properties of silicon carbide nanotubes
3.1 Single SiC sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Band structure of SiC nanotubes . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Optical dielectric function of SiC nanotubes . . . . . . . . . . . . . . . . 42
3.4 Static dielectric response of SiC nanotubes . . . . . . . . . . . . . . . . . 49
3.5 Electron energy loss spectrum . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Nonlinear optical properties of silicon carbide nanotubes
4.1 Bulk SiC polytypes . . . . . . . . . . . . . . . . . . .. . . . . 53
4.2 Single graphitic SiC sheet . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Second-order optical susceptibility . . . . . . . . . . . . . . . . . . . . . 62
4.4 Linear electro-optical coefficient . . . . . . . . . . . . . . . . . . . . . . . 68
5 Excited state calculations 71
5.1 Preliminary results of silicon . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Preliminary results of bulk SiC polytypes . . . . . . . . . . . . . . . . . . 72
5.3 Preliminary results of SiC nanotubes . . . . . . . . . . . . . . . . . . . . 75
6 Conclusions 81
dc.language.isoen
dc.title以第一原理計算研究碳矽奈米管的光學性質zh_TW
dc.titleFirst-principle studies of the optical properties of silicon carbide nanotubesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee梁贊全,魏金明,鄭靜,薛宏中
dc.subject.keyword碳矽奈米管,二階非線性光學性質,碳矽塊材,激發態,激發子,zh_TW
dc.subject.keywordsilicon carbide nanotubes,second harmonic generation,silicon carbide polytypes,excited state,exciton,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2008-07-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved