請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3760完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李綱 | |
| dc.contributor.author | Chih-Wei Wang | en |
| dc.contributor.author | 王致偉 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:31Z | - |
| dc.date.available | 2020-02-08 | |
| dc.date.available | 2021-05-13T08:36:31Z | - |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2017-01-10 | |
| dc.identifier.citation | [1] ARTC, 'ISO 26262 系統功能安全設計標準介紹,' https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1946, 2011.
[2] W. W. Royce, 'Managing the development of large software systems,' in proceedings of IEEE WESCON, 1970, pp. 328-338. [3] B. W. Boehm, 'A spiral model of software development and enhancement,' Computer, vol. 21, pp. 61-72, 1988. [4] K. Forsberg and H. Mooz, 'The relationship of system engineering to the project cycle,' in INCOSE International Symposium, 1991, pp. 57-65. [5] T. Noguchi and I. Takahashi, 'Quick torque response control of an induction motor based on a new concept,' in IEEJ Tech. Meeting Rotating Mach, vol. RM84-76, 1984, pp. 61-70. [6] K. Hasse, Zur Dynamik drehzahlgeregelter Antriebe mit stromrichtergespeisten Asynchron-kurzschlußläufermaschinen: na, 1969. [7] F. Blaschke, 'The principle of field orientation as applied to the new transvektor closed-loop control system for rotating field machines,' 1972. [8] H. Tajima and Y. Hori, 'Speed sensorless field-orientation control of the induction machine,' IEEE Transactions on Industry Applications, vol. 29, pp. 175-180, 1993. [9] J. Holtz, 'Sensorless control of induction motor drives,' Proceedings of the IEEE, vol. 90, pp. 1359-1394, 2002. [10] J.-I. Ha and S.-K. Sul, 'Sensorless field-orientation control of an induction machine by high-frequency signal injection,' IEEE Transactions on Industry Applications, vol. 35, pp. 45-51, 1999. [11] S.-H. Kim and S.-K. Sul, 'Maximum torque control of an induction machine in the field weakening region,' IEEE Transactions on Industry Applications, vol. 31, pp. 787-794, 1995. [12] S.-H. Kim and S.-K. Sul, 'Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region,' IEEE Transactions on industrial electronics, vol. 44, pp. 512-518, 1997. [13] S.-i. Sakai, H. Sado, and Y. Hori, 'Motion control in an electric vehicle with four independently driven in-wheel motors,' IEEE/ASME Transactions On Mechatronics, vol. 4, pp. 9-16, 1999. [14] Y. Hori, 'Future vehicle driven by electricity and control-research on four-wheel-motored' UOT Electric March II',' IEEE Transactions on Industrial Electronics, vol. 51, pp. 954-962, 2004. [15] N. Mutoh, Y. Hayano, H. Yahagi, and K. Takita, 'Electric braking control methods for electric vehicles with independently driven front and rear wheels,' IEEE Transactions on Industrial Electronics, vol. 54, pp. 1168-1176, 2007. [16] N. Mutoh, T. Kazama, and K. Takita, 'Driving characteristics of an electric vehicle system with independently driven front and rear wheels,' IEEE Transactions on Industrial Electronics, vol. 53, pp. 803-813, 2006. [17] M. Ye, Z. Bai, and B. Cao, 'Energy recovery for battery electric vehicles,' Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 222, pp. 1827-1839, 2008. [18] T. Suzuki and H. Fujimoto, 'Slip ratio estimation and regenerative brake control without detection of vehicle velocity and acceleration for electric vehicle at urgent brake-turning,' in 2010 11th IEEE International Workshop on Advanced Motion Control (AMC), 2010, pp. 273-278. [19] W.-P. Chiang, D. Yin, M. Omae, and H. Shimizu, 'Integrated Slip-Based Torque Control of Antilock Braking System for In-Wheel Motor Electric Vehicle,' IEEJ journal of industry applications, vol. 3, pp. 318-327, 2014. [20] Z. Wu, Y. Liu, and G. Pan, 'A smart car control model for brake comfort based on car following,' IEEE Transactions on Intelligent Transportation Systems, vol. 10, pp. 42-46, 2009. [21] D. Peng, Y. Zhang, C.-L. Yin, and J.-W. Zhang, 'Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles,' International Journal of Automotive Technology, vol. 9, pp. 749-757, 2008. [22] M. Tehrani, R. Hairi-Yazdi, B. Haghpanah-Jahromi, V. Esfahanian, M. Amiri, and R. Jafari, 'Design of an anti-lock regenerative braking system for a series hybrid electric vehicle,' International Journal of Automotive Engineering, vol. 1, pp. 16-20, 2011. [23] C. C. d. Wit and P. Tsiotras, 'Dynamic tire friction models for vehicle traction control,' in Decision and Control, 1999. Proceedings of the 38th IEEE Conference on, 1999, pp. 3746-3751 vol.4. [24] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat, 'An MPC/hybrid system approach to traction control,' IEEE Transactions on Control Systems Technology, vol. 14, pp. 541-552, 2006. [25] S. Drakunov, U. Ozguner, P. Dix, and B. Ashrafi, 'ABS control using optimum search via sliding modes,' IEEE Transactions on Control Systems Technology, vol. 3, pp. 79-85, 1995. [26] Y. Oniz, E. Kayacan, and O. Kaynak, 'A dynamic method to forecast the wheel slip for antilock braking system and its experimental evaluation,' IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, pp. 551-560, 2009. [27] E. F. Kececi and G. Tao, 'Adaptive vehicle skid control,' Mechatronics, vol. 16, pp. 291-301, 2006. [28] C. Mi, H. Lin, and Y. Zhang, 'Iterative learning control of antilock braking of electric and hybrid vehicles,' IEEE Transactions on Vehicular Technology, vol. 54, pp. 486-494, 2005. [29] R. Rajamani, Vehicle dynamics and control: Springer Science & Business Media, 2011. [30] H. Pacejka, Tire and vehicle dynamics: Elsevier, 2005. [31] R. Marino, P. Tomei, and C. M. Verrelli, Induction motor control design: Springer Science & Business Media, 2010. [32] K. Hedrick, 'Brake System Modeling, Control And Integrated Brake/throttle Switching Phase I,' California Partners for Advanced Transit and Highways (PATH), 1997. [33] J. Liu and H. Peng, 'Modeling and control of a power-split hybrid vehicle,' IEEE transactions on control systems technology, vol. 16, pp. 1242-1251, 2008. [34] N. Kim, S. Cha, and H. Peng, 'Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle,' IEEE Transactions on Control Systems Technology, vol. 19, pp. 1279-1287, 2011. [35] D. Ambuhl and L. Guzzella, 'Predictive reference signal generator for hybrid electric vehicles,' IEEE transactions on vehicular technology, vol. 58, pp. 4730-4740, 2009. [36] 張旭沅, 使用模型預測控制策略之複式電力推進電動車安全穩定控制研究, 碩士論文, 機械工程研究所, 國立台灣大學, 2014. [37] Y.-S. Lai and Y.-T. Chang, 'Design and implementation of vector-controlled induction motor drives using random switching technique with constant sampling frequency,' IEEE Transactions on power electronics, vol. 16, pp. 400-409, 2001. [38] Y.-S. Lai, 'Modeling and vector control of induction machines-A new unified approach,' in Power Engineering Society 1999 Winter Meeting, IEEE, 1999, pp. 47-52. [39] 周芳杰, '使用車載資通訊之電動車智慧節能行駛技術之研究, 碩士論文, 機械工程研究所, 國立台灣大學, 2013. [40] Tesla, 'Available:https://www.tesla.com/zh_TW/models.' [41] R. W. Rivers, Evidence in traffic crash investigation and reconstruction: identification, interpretation and analysis of evidence, and the traffic crash investigation and reconstruction process: Charles C Thomas Publisher, 2006. [42] DieselNet. ECE 15 + EUDC / NEDC. Available: https://www.dieselnet.com/standards/cycles/ece_eudc.php. [43] 'U. S. E. P. Agency. Fedral Test Procedure Revisions. Available: http://www.epa.gov/otaq/sftp.htm.' [44] 范峻,多輪驅動電動車之馬達驅控系統即時故障偵測與容錯控制技術之研究, 碩士論文, 機械工程研究所, 國立台灣大學, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3760 | - |
| dc.description.abstract | 本論文以模型為基礎(model-based)建立電動車馬達動力系統開發平台,將馬達控制演算法實施於dSPACE MicroautoboxII即時控制器開發平台上,進行馬達智慧化控制器設計,並實際驅控馬達,針對開發過程遇到之問題及步驟做討論;為提升開發平台安全及強健性,本論文導入小波轉換訊號分析技術針對開發過程中可預期之硬體損壞進行故障偵測,並以硬體測試資料驗證其可行性。
為提升行車安全及續航力,針對電動車輛之馬達再生煞車調配進行研究,以期能使用馬達達到防輪胎鎖死安全煞車之效果,並盡可能使用馬達再生煞車回收能源,藉以增加車輛續航力。本研究以滑模控制(Sliding mode control)理論進行輪胎滑差控制,與傳統防鎖死煞車系統進行回充能量比較,整合馬達再生煞車及液壓煞車,提供馬達煞車力之不足;而於多馬達動力系統之車輛,導入瞬時功率最小化策略(IPM)進行馬達系統動力分配最佳化,進一步提升馬達動力系統之效率,由不同情境下煞車之模擬結果顯示,此套控制技術使再生煞車時回收之能量有些微提升。 | zh_TW |
| dc.description.abstract | This thesis aims to construct an evaluation platform for model based electric vehicle powertrain system development. The electric motor controller algorithms will be implemented on the dSPACE MicroautoboxII real time prototyping controller to realize intelligent motor controller design, and through actually driving an electric motor, the developmental steps and soft/hardware trouble shooting will be closely examined. To increase the stability and robustness of the evaluation platform, the wavelet transformation method was used to analyze controller signals inorder to detect forseeable malfunction patterns caused by hardware failure, the methods will be validated through hardware experimentation.
To improve the driving stability and the range of the electric vehicle, this thesis focuses on induction motor regenerative braking. Through regenerative braking, it can achieve the purpose of anti-lock braking and recycle more energy. This research proposes a wheel slip control based on sliding mode control algorithm and integrates motor regenerative braking and hydraulic braking system to provide more braking torque when insufficient. For electric vehicles with multiple traction motors, the instantaneous power minimization (IPM) strategy is adopted to deal with the torque distribution to enhance driving efficiency. Finally, MiL/HiL simulation presents the effects of the control strategy. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:31Z (GMT). No. of bitstreams: 1 ntu-105-R02522806-1.pdf: 12038933 bytes, checksum: bb64ef104efd3468b9c662f85d365fcc (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 xiv 符號表 xv 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 研究貢獻 8 第二章 系統模型建立 9 2.1 車輛運動模型 9 2.1.1 車輛縱向動態模型 10 2.1.2 輪胎模型 12 2.2 電動馬達控制模型 15 2.3 液壓煞車系統 19 2.4 電池模型 22 第三章 控制系統設計及模擬分析討論 24 3.1 滑差控制器及煞車規則 25 3.1.1 滑差控制系統 25 3.1.2 煞車力分配 28 3.2 向量控制 30 3.3 瞬時功率最小化策略 35 3.4 系統架構 42 3.5 MiL模擬結果與討論分析 44 3.5.1 車輛模型建立 44 3.5.2 滑差控制器比較模擬分析 46 3.5.3 瞬時功率最小化策略模擬 59 3.5.4 結合再生煞車與液壓煞車 75 3.5.5 模擬分析與結論 82 第四章 HiL模擬平台架設與實驗討論 83 4.1 馬達驅動平台建置 84 4.1.1 軟體及硬體設備介紹 84 4.1.2 平台建置過程問題討論 87 4.1.3 問題討論整理 106 4.2 故障偵測 108 4.3 HiLS實驗結果討論 112 4.3.1 實驗設備及實驗設定 112 4.3.2 實驗結果討論 114 4.3.3 HiLS模擬結果討論 124 第五章 結論與未來工作建議 126 5.1 結論 126 5.2 未來工作建議 128 參考文獻 129 附錄一 132 | |
| dc.language.iso | zh-TW | |
| dc.subject | 動力分配 | zh_TW |
| dc.subject | 以模型為基礎 | zh_TW |
| dc.subject | 馬達動力系統 | zh_TW |
| dc.subject | 防輪胎鎖死系統 | zh_TW |
| dc.subject | 滑模控制 | zh_TW |
| dc.subject | Powertrain | en |
| dc.subject | Torque distribution | en |
| dc.subject | Model-based | en |
| dc.subject | Sliding-mode control | en |
| dc.subject | ABS | en |
| dc.title | 以模型為基礎之智能化車用感應馬達驅控系統研製及HiLS驗證技術研究 | zh_TW |
| dc.title | Research on Model-based Intelligent Induction Motor Control System and HiLS Verification Technology
for Electric Vehicles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文祥,吳文方,呂百修,陳俊榮 | |
| dc.subject.keyword | 以模型為基礎,馬達動力系統,防輪胎鎖死系統,滑模控制,動力分配, | zh_TW |
| dc.subject.keyword | Model-based,Powertrain,ABS,Sliding-mode control,Torque distribution, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU201700045 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-01-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 11.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
