Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37603
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民
dc.contributor.authorPing-Yen Linen
dc.contributor.author林秉延zh_TW
dc.date.accessioned2021-06-13T15:34:32Z-
dc.date.available2008-07-18
dc.date.copyright2008-07-18
dc.date.issued2008
dc.date.submitted2008-07-11
dc.identifier.citation何美儀,1994。台灣西部地區三維速度構造。中央大學地球物理研究所碩士論文。
辛在勤與何美儀,1994。台灣西部地區三維速度構造。氣象學報第四十卷第三期,216-234。
林豐澤,2005。演化式計算上篇:演化式演算法的三種理論模式。智慧科技與應用統計學報第三卷第一期,1-28。
林豐澤,2005。演化式計算下篇:基因演算法以及三種應用實例。智慧科技與應用統計學報第三卷第一期,29-56。
An, M. and Assumpção, M., 2006. Crustal and upper mantle structure in the intracratonic Paraná Basin, SE Brazil, from surface wave dispersion using genetic
algorithms. Journal of South American Earth Sciences 21, 173-184. doi:10.1016/j.jsames.2006.03.001.
Backus, G. E., Gilbert, J. F., 1967. Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal International, Vol. 13(1-3), 247-276. doi:10.1111/j.1365-246X.1967.tb02159.x
Baker, J. E., 1985. Adaptive selection methods for genetic algorithms. In Grefenstette, J. J., Proceeding of the first international conference on genetic algorithms and their applications. Lawrence Erlbaum Associates, Publishers.
Davis, L., Steenstrup, M., 1990. Genetic algorithms and simulated annealing: An overview. In Davis, L., Genetic algorithms and simulated annealing, Morgan Kaufmann Publishers.
Fogel, L. J., Owens, A. J. and Walsh, M. J., 1966. Artificial Intelligence through simulated evolution. New York: Wiley.
Gallagher, K., Sambridge, M. and Drijkoningen, G., 1991. Genetic algorithms: An evolution from Monte Carlo methods for strongly non-linear geophysical optimization problem. Geophysical Research Letters, Vol. 18, NO. 12, 2177-2180.
Goldberg, D. E., 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company.
Holland, J. H., 1975. Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press.
Kirkpatrick, S., Gelatt, C. D., Jr. and Vecchi, M. P., 1983. Optimization by Simulated Annealing. Science, Vol. 220, NO. 4598, 671-680. doi:10.1126/science.220.4598.671.
Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D.and Kradolfer, U., 1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research, Vol. 99, NO. B10, 19635-19646.
Metropolis, N. and Ulam, S., 1949. The Monte Carlo method. Journal of the American Statistical Association, Vol. 44, NO. 247, 335-341.
Rechenberg, I., 1965. Cybernetic solution path of an experimental problem. Aircr. Establ., libr. Transl. 1122. Franborough, Hants., UK.
Stoffa, P. L. and Sen, M. K., 1991. Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms. Geophysics, Vol. 56, NO. 11, 1794-1810. doi:10.1190/1.1442992.
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., Avouac, J. P., 2007. Seismic tomography of Taiwan: Improved constraints from a dense network of strong-motion stations. Journal of Geophysical Research, Vol. 112, B08312. doi:10.1029/2007JB004983.
Wu, Y. M., Zhao, L., Chang, C. H., Hsu, Y. J., 2008. Focal mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America 98,
651–661. doi:10.1785/0120070115.
Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L. and Nakamura, M., 2008. A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America 98, 1471–1481. doi:10.1785/0120070166.
Yamanaka, H. and Ishida, H., 1996. Application of Genetic Algorithms to an Inversion of Surface-Wave Dispersion Data. Bulletin of the Seismological Society of America, Vol. 86, NO. 2, 436-444.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37603-
dc.description.abstract一維速度構造是地震研究之重要基礎資料,舉凡快速定位、波形反演等工作皆有賴於此,於是需要以可靠且有效率的演算法建立可信賴的速度構造。全域搜尋的演算方式雖然最為直覺,也最為可靠,但在資料量龐大的地球物理研究中,大量計算資源需求往往成為實際應用上的最大窒礙。現存的應用程式中,則大多使用線性計算的逆推方式。然而,這種方式除了有著容易受到先驗知識影響的缺點,且難以同時決定各層之厚度與速度。因此,本研究採用基因演算法,期望以此非線性的逆推方式,有效率地建立可靠的一維速度構造。本研究取用臺灣嘉義地區1991年至2006年地震的P波與S波資料,並以福傳程式語言撰寫程式來分析。結果顯示地震之分布密度會嚴重影響演算結果的可靠程度,但在地震資料充足之區域,基因演算法確實可在穩定的演算下大幅節省計算資源與時間,快速找出速度不連續面之深度。另外,藉由演算結果的比較,推測CHY測站底下存在迥異於周遭的區域構造。然而,因為基因演算法帶有隨機過程,難以確保得到最佳解與否,因此本研究建議應該將基因演算法的結果做為初始模型,進一步結合別的逆推方式做最佳化為宜。zh_TW
dc.description.abstractLayered velocity model is important basic information for seismology. Global search and calculus-based inversion are commonly used to determine layered models. Global search offers accurate solutions but usually takes much time calculating. On the contrary, calculus-based inversion saves time but usually comes with the local minimum problem. Genetic algorithm (GA), which has been used in many fields, probably is an appropriate method to balance between accuracy and time saving. The purpose of our research was to determine velocities and thicknesses of layered velocity model simultaneously with GA method. In this study, P phase and S phase arrivals were used. Fortran program codes were written and tested with earthquake data of Chia-Yi area, Taiwan from1991 to 2006. The results showed that the velocity models calculated by GA are strongly affected by the density distribution of earthquakes. However, with enough data, our approach balanced well between efficacy and efficiency. The results suggest that GA could be a good way to obtain reliable initial velocity models for geophysical studies.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:34:32Z (GMT). No. of bitstreams: 1
ntu-97-R95224213-1.pdf: 2703573 bytes, checksum: 9f8eb6432a29d4006245c8bcacdedc9d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員審定書.……...…………………………………………………...…….………I
中文摘要…………………………………………………………………....….………III
英文摘要…………………………………...……………………………....…………. IV
第一章 前言
第一節 動機……………………………………..…………………………...……1
第二節 隨機式演算法…..…………………………………………………….......3
第三節 基因演算法…………………………..……………………………...……5
第二章 方法與資料
第一節 基因演算法…………………………………………………………….…7
第二節 本研究採用的基因演算法…………...…………..……………………..11
第三節 資料選取……………………………...…………..……………………..15
第三章 結果與討論
第一節 人造資料測試…………………………………………………...………17
第二節 缺失資料測試………………………………………………………...…21
第三節 與傳統基因演算法比較………………………………………………...22
第四節 單站P波…………………………………………………………………24
第五節 單站P,S波…………………………………………………………….…25
第六節 雙站P,S波…………………………………………………………….…27
第七節 多站P,S波及重定位………………………………………………….…29
第四章 結論………………………………………………………………………….31
參考文獻…………………………………………………………………………….…32
附錄一 2008年地球物理研討會參展海報……………………………………..….…35
附錄二 漫畫說GA………………………………………………………………….…36
dc.language.isozh-TW
dc.subject嘉義zh_TW
dc.subject基因演算法zh_TW
dc.subject速度構造zh_TW
dc.subjectchiayien
dc.subjectgenetic algorithmen
dc.subjectvelocity modelen
dc.title以基因演算法同步決定一維構造之各層速度與厚度zh_TW
dc.titleSimultaneous Determination of Velocities and Thicknesses of Layered Model with Genetic Algorithmen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee喬凌雲,洪淑惠,龔源成
dc.subject.keyword速度構造,基因演算法,嘉義,zh_TW
dc.subject.keywordvelocity model,genetic algorithm,chiayi,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2008-07-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved