Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37566
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉(Chuin-Shan Chen)
dc.contributor.authorYan-Yu Chenen
dc.contributor.author陳彥瑜zh_TW
dc.date.accessioned2021-06-13T15:32:59Z-
dc.date.available2008-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-13
dc.identifier.citation1 BASF Corporation (2007). “Science around us,” from http://www.basf.de/science_around_us
2 Barthlott, W. and C. Neinhuis (1997). “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202, 1-8
3 Feenstra, J. and H. Rob (2006). “Electrowetting Displays,” from http://www.liquavista.com/technology
4 Onda, T., S. Shibuichi, and K. Tsujii (1996). “Super-Water-Repellent Fractal Surfaces,” Langmuir, Vol. 12, No. 9, 2125-2127
5 Shibuichi, S., T. Onda, N. Satoh, and K. Tsujii (1996). “Super Water-Repellent Surface Resulting from Fractal Structure,” Journal of Physical Chemistry, 100, 19512-19517
6 Johnson, R. E., Jr. and R. H. Dettre (1969). “Wettability and Contact Angles,” Surface and Colloid Science, 85-153
7 Johnson, R. E., and R. H. Dettre (1964). “Contact angle, Wettability and Adhesion,” Advances in Chemistry Series, Vol. 43, 112-135
8 Johnson, R. E., Jr., and R. H. Dettre (1964). “Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface,” The Journal of Physical Chemistry, Vol. 64, No. 7, 1744-1750
9 Dettre, R. H. and R. E. Johnson, Jr. (1965). “Contact Angle Hysteresis. IV. Contact Angle Measurements on Heterogeneous Surfaces,” The Journal of Physical Chemistry, Vol. 69, No. 5, 1507-1515
10 Quéré, D. (2005). “Non-sticking drops,” Reports on Progress in Physics, 68, 2495-2532
11 Quecedo, M., M. Pastor, M. I. Herreros, J. A. F. Merodo, Q. Zhang (2005). “Comparison of two mathematical models for solving the dam break problem using the FEM method,” Computer methods in applied mechanics and engineering, 194, 3984-4005
12 Kaul, S. P (2003). “Numerical simulation of two-phase flow in discrete fractures using Rayleigh-Ritz finite element method,” M.S. Thesis, Department of Science, Texas A&M University, College Station, Texas
13 Cairncross, R. A., S. Madsu, and P. R. Schunk (2004). “A Finite Element Formulation for Modeling Dynamic Wetting on Flexible Substrates and in Deformable Porous Media,” Sandia Report, Albuquerque, New Mexico and Livermore, California, SAN2004-0967
14 Baer, T. A., R .A Cairncross, P. R. Schunk, R. R. Rao, P. A. Sackinger (2000). “A finite element method for free surface flows of incompressible fluids in three dimensions. Part II. Dynamic wetting lines,” International Journal for Numerical Methods in Fluids, 33, 405-427
15 Nijmeijer, M. J. P., C. Bruin, A. F. Bakker, and J. M. J. van Leeuwen (1990). “Wetting and drying of an iner wall by a fluid in a molecular-dynamics simulation,” Physical Review A, Vol. 42, No. 10, 6052-6059
16 Nijmeijer, M. J. P., J. M. J. van Leeuwen (1990). “Microscopic expressions for the surface and line tension,” Journal of Physics A, 23, 4211-4235
17 Nijmeijer, M. J. P., C. Bruin, A. F. Bakker and J. M. J. van Leeuwen (1992) “Molecular dynamics of the wetting and drying of a wall with a long-ranged wall-fluid interaction,” Journal of Physics, Condensed Matter 4, 15-31
18 Nijmeijer, M. J. P., C. Bruin, A. F. Bakker, and J. M. J. van Leeuwen (1991). “Determination of the location and order of the drying transition with a molecular-dynamics simulation,” Physical Review B, Vol. 44, No. 2, 834-837
19 Nijmeijer, M. J. P., C. Bruin, A. F. Bakker, and J. M. J. Van Leeuwen (1989). “A vusual measurement of contact angles in a molecular-dynamics simulation,” Physica A, 160, 166-180
20 Nijmeijer, M. J. P. , A. F. Bakker, C. Bruin, and J. H. Sikkenk(1988). “A molecular dynamics simulation of the Lennard-Jones liquid-vapor interface,” The Journal of Chemical Physics, 89, 6, 3789-3792
21 Harris, J. G. (1992). “Liquid-Vapor Interfaces of Alkane Ollgomers. Structure and Thermodynamics from Molecular Dynamics Simulation of Chemically Realistic Models,” The Journal of Chemical Physics, 96, 5077-5086
22 Sikkenk, J. H., J .O. Indekeu, J. M. J. van Leeuwen, E. O. Vossnack, and A. F. Bakker (1988). “Simulation of Wetting and Drying at Solid-Fluid Interfaces on the Delft Molecular Dynamics Processor,” Journal of Statistical Physics, Vol. 52, No. 1, 23-44
23 Hautman, J. and M. L. Klein (1991). “Microscopic Wetting Phenomea,” Physical Review Letters, Vol. 67, No. 13, 1763-1766
24 Feller S. E., Y. Zhang, and R. W. Pastor (1995). “Computer simulation of liquid/liquid interface. II. Surface tension-area dependence of a bilayer and monolayer,” The Journal of Chemical Physics, Vol. 103, No. 23, 10267-10276
25 Jones, J. L., M. Lal, J. N. Ruddock, and N. A. Spenley (1999). “Dynamics of drop at a liquid/solid interface in simple shear fields: A mesoscopic simulation study,” Faraday Discuss, Vol. 112, 129-142
26 Clark, A. T., M. Lal, J. N. Ruddock, and P. B. Warren (2000). “Mesoscopic Simulation of Drops in Gravitational and Shear Fields,” Langmuir, Vol. 16, 6342-6350
27 Kong, B. and X. Yang (2006). “Dissipative Particle Dynamics Simulation of Contact Angle Hysteresis on a Patterned Solid/Air Composite Surface,” Langmuir, Vol. 22, 2065-2073
28 Warren, P. B. (2003). “Vapor-liquid coexistence in many-body dissipative particle dynamics,” Physical Review E, Vol. 68, 066702
29 Öner, D., and T. J. McCarthy (2000). “Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability,” Langmuir, 16, 7777-7782
30 Bico. J., C. Tordeux and D. Quere (2001). “Rough wetting,” Europhysics Letters, 55, 214-220
31 Yeh, K. Y., L. J. Chen, and J. Y. Chang (2008). “Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces,” Langumir, 24, 245-251
32 Lafuma, A., and D. Quéré (2003) “Superhydrophobic States,” Nature Materials, 2, 457-460
33 Barbieri, L., E. Wagner, and P. Hoffmann (2007). “Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles,” Langmuir, 23, 1723-1734
34 Hoogerbrugge, P. J. and J. Koelman (1992). “Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics,” Europhysics Letters, 19, 155-160
35 Koelman , J. and P. J. Hoogerbrugge (1993). “Dynamic Simulations of Hard-Sphere Suspensions Under Steady Shear,” Europhysics Letter, 21, 363-368
36 Groot, R. D. and P. B. Warren (1997). “Dissipative particle dynamics: Bridging the gap between atomic and mesoscopic simulation,” The Journal of Chemical Physics, 107, 15, 4423-4435
37 Otter, W. K. Den and J. H. R. Clarke (2000). “The Temperature in Dissipative Particle Dynamics,” Internation Journal of Modern Physics C, Vol. 11, No. 6, 1179-1193
38 Pagonabarraga, I. and D. Frenkel (2000). “Non-Ideal DPD Fluids,” Molecular Simulation, Vol. 25, 167-175
39 Pagonabarraga, I. and D. Frenkel (2001). “Dissipative particle dynamics for interacting systems,” Journal of Chemical Physics, Vol. 115, 5015-5026
40 Trofimov, S. Y., E. L. F. Nies, M. A. J. Michels (2002). “Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures,” Journal of Chemical Physics, Vol. 117, No. 20, 9383-9394
41 Frenkel, D. and B. Smit (2001), Understanding Molecular Simulation: From Algorithms to Applications, Amsterdam, 465-478
42 Navascués, G. (1979). “Liquid surfaces : theory of surface tension,” Report on Progress in Physics, Vol. 42, 1132-1186
43 廖英博(2004),“耦合原子尺度模擬與連體描述之三維擬連體法理論與實作”, 碩士論文,國立台灣大學土木研究所,台北。
44 賴家偉(2006),“以分子動力模擬探討奈米壓印之變形行為與差排機制”,碩士論文,國立台灣大學土木研究所,台北。
45 Lin, T. H., W. P. Shih, C. S. Chen, and Y. T. Chiu (2006). “Simulation and analysis of interfacial wettability by dissipative particle dynamics,” IEEE Review of Advances in Micro, Nano, and Molecular System, 1, 265-266
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37566-
dc.description.abstract濕潤現象廣泛運用於工程應用中,其中接觸角是濕潤現象中最容易觀察到的物理量,而底板微小的結構變化所造成的遲滯現象導致接觸角可能會有巨大的改變。本論文利用具有凡得瓦迴線(van der Waals loop)的多體消散粒子動力學(Multi-body Dissipative Particle Dynamics, MDPD)模擬液滴在理想的結構板上所造成的遲滯現象,並分析遲滯現象與濕潤理論的關係。
DPD具有類似分子動力法(Molecular Dynamics, MD)的離散力學計算,MDPD進一步改良原DPD理論,可模擬出液相/氣相共存介面,使模擬系統更貼切的描述熱力學系統,也更適合做為研究濕潤現象的工具。本研究DPD程式建構於物件導向設計的模擬程式平台Digital Material-MD架構中,藉由其有效率的底層程式設計,加上平行化程式設計進行DPD濕潤現象模擬,並更進一步實作可節省系統顆粒總量的模擬方式,增進模擬效率。本論文也比較了三種接觸角計算方式,並提出此三種接觸角計算在離散粒子的最佳計算方式。
進行濕潤模擬中,以不同起始液滴形狀做為起始條件,觀察各個收斂的接觸角狀態,本研究發現藉由降低系統溫度能降低接觸角量測誤差,但溫度過低系統將呈現非液體行為。在平板模擬中,我們驗證了Young’s Equation的假設;在結構化底板模擬中,我們模擬出前進角、後退角與其他半穩定狀態。將不同粗糙度的底板遲滯範圍與Wenzel/Cassie理論相比較,θw<130°下能觀察到較大的遲滯範圍,θw>130°時遲滯範圍在15°~30°內變化,與實驗所觀察的趨勢吻合。
zh_TW
dc.description.abstractWetting is an important phenomenon, and has been used widely in many engineering applications. The contact angle is often used to describe the degree of wetting. The defect of the surface might induce wide contact angle distribution, often called hysteresis. In this thesis, Multi-body Dissipative Particle Dynamics (MDPD), which can represent the van der Waals loop, is used to simulate the wetting phenomenon on ideal patterned substrates and to analyze the relation between simulated hysteresis and theoretical prediction or experimental observation.
DPD is similar to Molecular Dynamic (MD) while the MDPD is improved from DPD to model the liquid/vapor coexistence interface. Such improvement allows us to describe the thermodynamic system associated with the wetting phenomenon. An efficient implementation to reduce the particles for the base is introduced. Three contact angle measurement methods from discrete particles are implemented.
For a liquid droplet on an ideal flat substrate, hysteresis will not occur. This assessment was verified in our wetting simulations, in which the same contact angle was reached with different initial liquid shapes. For a droplet on a patterned substrate, the advancing contact angle, receding contact angle, and many meta-stable states have been found in our simulations. We found that θw<130° has more hysteresis. When θw>130°, the hysteresis is limited to a range of 15°~30°.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:32:59Z (GMT). No. of bitstreams: 1
ntu-97-R95521608-1.pdf: 4595427 bytes, checksum: 68e509fdb3f7132d1f01501cc8ae2b71 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 5
1.4論文架構 6
第二章 濕潤現象與理論 7
2.1 濕潤理論 7
2.1.1 Young’s Equation 8
2.1.2 Wenzel’s Equation 9
2.1.3 Cassie’s Equation 10
2.2 遲滯現象 11
2.3 遲滯現象討論 13
2.4 小結 19
第三章 消散粒子動力學 21
3.1 消散粒子動力學簡介 21
3.2 消散粒子動力學方法 22
3.3 G-W Velocity-Verlet 27
3.4 模擬環境建構 29
3.4.1 Time-step 29
3.4.2 Equation of State 31
3.4.3液-氣相共存 31
3.4.4表面張力計算 33
3.5 接觸角計算 34
3.5.1 VCA Optima XE 35
3.5.2 幾何形狀推估 36
3.5.3 幾何重心估算 37
3.5.4 接觸角計算方法比較 38
第四章 濕潤現象模擬 41
4.1 模擬系統模型 41
4.2理想平板接觸角模擬 44
4.3 結構化平板遲滯現象模擬 48
4.4 遲滯現象與濕潤理論比較 54
4.5 小結 55
第五章 結論 61
5.1 結果與討論 61
5.2 未來研究方向 62
參考文獻 65
附錄 71
dc.language.isozh-TW
dc.subject遲滯轉換zh_TW
dc.subject消散粒子動力學zh_TW
dc.subject遲滯現象zh_TW
dc.subject液氣相介面zh_TW
dc.subject濕潤現象zh_TW
dc.subjectDissipative Particle Dynamics (DPD)en
dc.subjectLiquid/Vapor coexistence interfaceen
dc.subjectWetting phenomenonen
dc.subjectHysteresisen
dc.subjectHysteresis transitionen
dc.title以液氣相共存消散粒子動力法探討接觸角與遲滯現象zh_TW
dc.titleAnalysis of Contact Angle and Hysteresis Phenomenon
on Patterned Substrate using Liquid/Vapor Coexistence
Dissipative Particle Dynamics Simulation
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳立仁(Li-Jen Chen),施文彬(Wen-Pin Shih)
dc.subject.keyword消散粒子動力學,液氣相介面,濕潤現象,遲滯現象,遲滯轉換,zh_TW
dc.subject.keywordDissipative Particle Dynamics (DPD),Liquid/Vapor coexistence interface,Wetting phenomenon,Hysteresis,Hysteresis transition,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2008-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved