Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37551
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國
dc.contributor.authorChien-Wei Linen
dc.contributor.author林建維zh_TW
dc.date.accessioned2021-06-13T15:32:23Z-
dc.date.available2016-08-12
dc.date.copyright2011-08-12
dc.date.issued2011
dc.date.submitted2011-08-10
dc.identifier.citation[1] 蔡幸甫,“輕金產業發展狀況及商機”,工業材料雜誌,174期,pp. 77-83,2001年6月。
[2] 劉文海,“歐洲汽車輕量化發展動向”,中華民國鍛造協會會刊, 2期,pp. 1-2,2003年7月。
[3] P. Appendino, C. Badini, F. Marino, A. Tomasi, “6061 AlumiNum alloy-SiC particulate composite: a comparison between aging behaviour in T4 and T6 treatments”, Materials Science and Engineering, A135, pp. 275-279, 1991.
[4] P. Appendino, F. Marino, A. Tomasi, “Natural aging characteristics of aluminum alloy 6061 reinforced with SiC whiskers and particles”, Materials Science arid Engineering, A136, pp. 99-107, 1991.
[5] Z. M. E. Baradie, O. A. E. Shahat and A. N. A. E. Azim, “Accelerated aging processes in SiC-7020 aluminium composite”, Journal of Materials Processing Technology, 79, pp. 1-8, 1998.
[6] R. A. Siddiqui, H. A. Abdullah, K. R. A. Belushi, “Influence of aging parameters on the mechanical properties of 6063 aluminium alloy”, Journal of Materials Processing Technology, 102, pp. 234-240, 2000.
[7] N. M. Han, X. M. Zhang, S. D. Liu, B. Ke, X. Xin, “Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050”, Materials Science and Engineering, 2010.
[8] O. S. Hopperstad, K. Marthinsen, B. Holmedal, “Ageing and work-hardening behavior of a commercial AA7108 aluminium alloy”, Materials Science and Engineering, A524, pp. 151-157, 2009.
[9] S. Lin, Z. Nie, H. Huang, B. Li, “Annealing behavior of a modified 5083 aluminum alloy”, Materials and Design, 31, pp. 1607-1612, 2010.
[10] X. Roizard, F. Raharijaona, J. V. Stebut and P. Belliard, “Influence of sliding direction and sliding speed on the microhydrodynamic lubrication component of aluminium mill-finish sheets”, Tribology International, 32, pp. 739-747, 1999.
[11] P. Guillon, X. Roizard, P. Belliard, “Experimental methodology to study tribological aspects of deep drawing-application to aluminum alloy sheets and tool coatings”, Tribology International, 34, pp. 757-766, 2001.
[12] D. O. Bello, S. Walton, “Surface topography and lubrication in sheet-metal forming”, Butterworth Scientific, 1987.
[13] X. Z. Wang, S. H. Masood, “Investigation of die radius arc profile on wear behaviour in sheet metal processing of advanced high strength steels”, Materials and Design, 32, pp. 1118–1128, 2011.
[14] M. Jain, J. Allin, M. J. Bull, “Deep drawing characteristics of automotive aluminum alloys”, Material Science and Engineering, A256, pp. 69-82, 1998.
[15] W. Zhang, R. Shivpuri, “Probabilistic design of aluminum sheet drawing for reduced risk of wrinkling and fracture”, Reliability Engineering and System Safety, 94, pp. 152-161, 2009.
[16] K. Lange, “Handbook of Metal Forming”, McGraw-Hill, Chap. 18, 20, 1985
[17] H. Iseki, T. Murota, K. Katoh, “On the determination of the redrawing ratio in the redrawing of cylindrical shells, with numerical simulation”, 日本機械學會論文集,52卷480号,pp. 2257-2264.
[18] H. Iseki, T. Murota, K. Katoh, “On the determination of the redrawing ratio in the redrawing of cylindrical shells, with numerical simulation”, 日本機械學會論文集,54卷505号,pp. 2249-2256.
[19] H. Iseki, R. Sowerby, K. Katoh, “On the determination of the redrawing ratio in the redrawing of cylindrical shells, with numerical simulation”, 日本機械學會論文集,54卷508号,pp. 3106-3113.
[20] S. Thiruvarudchelvan, W. Lewis, “The redrawing of cups at a redraw ratio of 3 using an annular urethane pad”, Journal of Materials Processing Technology, 87, pp. 128-130, 1999.
[21] S. Thiruvarudchelvan, F. W. Travis, “An exploration of the hydraulic-pressure assisted redrawing”, Journal of Materials Processing Technology, 72, pp. 117-123, 1997.
[22] J. Liu, M. J. Tan, A. E. W. Jarfors, A. U. L. Yingyot, S. Castagne “Formability in AA5083 and AA6061 alloys for light weight applications”, Materials and Design, 31, pp. 66-77, 2010.
[23] S. Toros, F. Ozturk, “Flow curve prediction of Al–Mg alloys under warm forming conditions at various strain rates by ANN”, Applied Soft Computing, 11, pp. 1891-1898, 2011.
[24] S. Hassanifarda, M. Zehsaz, “The effects of residual stresses on the fatigue life of 5083-O aluminum alloy spot welded joints”, Procedia Engineering, 2, pp. 1077-1085, 2010
[25] S. Ragu, G. Ganesan, R. Karthikeyan, “Influence of variables in deep drawing of AA 6061 sheet”, Trans. Nonferrous Met. Soc. China, 20, pp. 1856-1862, 2010.
[26] S. P. Keeler, W. A. Backofen, “Plastic instability and fracture in sheets stretched over rigid punches”, Trans ASM, 50, pp. 25-49, 1963.
[27] G. M. Goodwin, “Application of strain analysis on sheet metal forming problems in the press shop”, SAE Paper, 680093, 1968.
[28] K. Nakazima, “Study on the formablity of steel sheets” Yawata Techanical Report, 264, pp. 141-154, 1954.
[29] A. Makinouchi, “Sheet metal forming simulation in industry”, Journal of Materials Processing Technology, 60, pp. 19-26, 1996.
[30] E. Spisak and F. Stachowicz, “Deformation analysis of large-sized auto body panels” Journal of Materials Processing Technology, 53, No. 3, pp. 817-826, 1995.
[31] K. Yamaguchi, S. Nishimura, N. Takaura, M. Fukuda, “Thickness Dependence of Limit Strains in Sheet Metal Forming” Procedings of the 4th International Conference on Production Engineering Tokyo, pp. 155-160, 1980.
[32] 劉家宏,“三維有限元素法在汽車板金沖壓成形分析上之應用”,台灣大學機械工程研究所碩士論文,1993。
[33] 蔣佰宏,“引伸扣環對板金沖壓成形影響分析”,台灣大學機械工程研究所碩士論文,1994。
[34] F. K. Chen, Y. C. Liao, “Analysis of draw-wall wrinkling in the stamping of a motorcycle oil tank” Journal of Materials Processing Technology, 192-193, pp. 2002-2003, 2007.
[35] M. Kawka, A. Makinouchi, “Process simulation in sheet metal forming” Journal of Materials Processing Technology, 46, pp. 135-140, 1994.
[36] M. Karima, “Practical application of process simulation in stamping” Journal of Materials Processing Technology, 46, 309-320, 1994.
[37] H. Qiu, Y. Huang, Q. Liu, “The study of engine hood panel forming based on numerical simulation technology” Journal of Materials Processing Technology, 187-188, pp. 140-144, 2007.
[38] Y. G. Wang, Y. P. Wei, Q. Y. Shen, C. L. Zhao, X. Y. Ruan, “Addendum and binder surface design for automotive panel drawing die” Journal of Shang Hai Jiao Tong University, 33, No. 2, 1999.
[39] X. Yao, J. Chen, X. X. Shi, X. Y. Ruan “Addendum and binder surface parametric design for automotive panel drawing die” Die and Mould Technology, NO. 4, 2002.
[40] 黃柏憲,“板金沖壓模具之逆向工程設計與分析”,台灣大學機械工程研究所碩士論文,2008。
[41] 陳明志,“汽車引擎蓋板之沖壓成形模面設計”,台灣大學機械工程研究所碩士論文,2010。
[42] F. Barlat, J. Lian, “Plastic behavior and stretchability sheet metals. PartI:A yield function for orthotropic sheets under plane stress condition”, International Journal of Plasticity, 5, pp. 51-66, 1989.
[43] D. J. Lege, F. Barlat, J. C. Brem, “Characterization and modeling of the mechanical behavior and formability of A 2008-T4 sheet sample”, International Journal of Mechanical Sciences, 7, pp. 549-563, 1989.
[44] F. Barlat, D. J. Lege, J. C. Brem, “A six-component yield function for anisotropic materials”, International Journal of Plasticity, 7, pp. 693-712, 1991.
[45] F. Barlat, J. C. Brem, J. Liu, “On crystallographic texture gradient and its mechanical consequence in rolled aluminum-lithium sheet”, Scripta Metallurgica et Materialia, 27, pp. 1121-1126, 1992.
[46] R. Hill, “Constitutive modeling of orthotropic plasticity in sheet metals”, Journal of the Mechanics and Physics of Solids, 38, pp. 405-417, 1990.
[47] R. Hill, “A theoretical perspective on in-plane forming of sheet metal”, Journal of the Mechanics and Physics of Solids, 39, No. 2, pp. 295-307, 1991.
[48] R. Hill, “A user-friendly theory of orthotropic plasticity in sheet metals”, International Journal of Mechanical Sciences, 35, No. 1, pp. 19-25, 1993.
[49] R. Hill, S. S. Hecker, M. G. Stout, “An investigation of plastic flow and differential work hardening in orthotropic bress tubes under fluid pressure and axial load”, International Journal of Solids Structure, 31, No. 21, pp. 2999-3021, 1994.
[50] Appleton, “A study of the biaxial stress-strain behavior of sack paper Part1. Theoretical considerations and description of a static biaxial stress-strain tester”, Institute of Paper Chemistry, 1959.
[51] D. Van, H. A. Smits, “Biaxial testing of fibre reinforced composites”, Optimat Blades, pp. 2-8, 2003.
[52] K. Christoph, M. H. Peter, E. Josef, “A multi-surface plasticity model for wood and stabilization of its numerical implementation for crack development”, INWS, 2005.
[53] A. S. Shenyang, “Fatigue crack propagation for biaxial stress cycling”, Proceedings of the Institution of Mechanical Engineers, 2, No. 4, pp. 284-292, 1989.
[54] D. E. Green, K. W. Neale, S. R. MacEwen, A. Makinde, R. Perrin, “Experimental investigation of the biaxial behavior of an aluminum sheet”, International Journal of Plasticity, 20, pp. 1677-1706, 2004.
[55] M. Samuel, “Experimental and numerical prediction of springback and side wall curl in U-bending of anisotropic sheet metals”, Journal of Materials Processing Technology, 105, pp. 382-393, 2000.
[56] J. T. Gau, G. L. Kinzel, “A new model for springback prediction in which the Bauschinger effect is considered”, International Journal of Mechanical Sciences, 43, pp. 1813-1832, 2001.
[57] O. Jr, “Springback in high strength anisotropic steel”, 6th International LS-DYNA Users Conference Simulation 2000, 2000.
[58] N. Asnafi, “On springback of double-curved autobody panels”, International Journal of Mechanical Sciences, 43, pp. 5-37, 2001.
[59] H. Laurent, R. Greze, P. Y. Manach, S. Thuillier, “Influence of constitutive model in springback prediction using the split-ring test”, International Journal of Machanical Sciences, 51, pp. 233-245, 2009.
[60] F. Yoshida, T. Uemori, K. Fujiwara, “Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, 18, pp. 633-659, 2002.
[61] F. Yoshida, T. Uemori, “A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation”, International Journal of Plasticity, 18, pp. 661-686, 2002.
[62] 洪英治,“先進高強度鋼板沖壓成形包辛格效應之研究”,台灣大學機械工程研究所碩士論文,2011。
[63] 魏華佐,“先進高強度鋼板沖壓成形扭曲現象之研究”,台灣大學機械工程研究所碩士論文,2010。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37551-
dc.description.abstract近年來,由於消費者對於空間舒適與多功能要求提升,導致代步工具之體積重量不斷增加。然而面對能源危機與日漸惡化的生存環境,減少溫室氣體的排放已成為重要課題,以至於部品輕量化已是各大板金廠發展的目標,而由於鋁合金的比重約為鋼的三分之一,使得許多鋼板逐漸被鋁合金所取代,甚至歐美先進國家皆陸續推出全鋁合金汽車以及遊艇。
鋁合金板件雖然擁有重量輕及耐腐蝕特性,但其成形性較傳統鋼板為差,在沖壓過程中除了容易產生破裂(crack)問題外,鋁合金因較低的彈性係數(elastic modulus)而產生的回彈(springback)缺陷,更使得尺寸精度上的變異難以克服。也因此過去鋼板的設計概念無法直接套用於鋁合金的模具設計,造成板金廠開發時程與成本的耗費。
在沖壓成形上,鋁板大都選用成形性相對較佳的5000與6000系列材料,本論文亦是選用A5083-O與鋁A6181-T4板材作為研究素材,藉以探討不同降伏準則(yield criteria)與硬化準則(hardening rule)對鋁合金板材沖壓成形CAE分析準確性的影響。並經由實際實驗取得材料參數,應用於V型彎曲及U形帽狀(U-hat)引伸成形之CAE模擬分析上,再將板件進行成形實驗,以比對模擬分析結果,提供適於鋁合金板件成形分析之材料模型。
複雜載具方面,本論文選用實際開發之引擎蓋板,探討傳統鋼板與鋁合金板件之成形差異,經由製程參數與模具修正條件的改善,整理各參數對成品拉伸之影響。引擎蓋板選用了A6181-T4材料,由於
經過T4熱處理後的機械性質會隨著時間而有所改變,因此本研究經由實驗取得各時效時間之材料參數,將時效實驗結果應用於CAE模擬分析,並進行實際開模驗證,以比對鋁合金沖壓成形之分析模式。
本研究採用所上述鋁合金板件成形分析模式,進行鋁合金遊艇外板沖壓成形之技術建立。由於遊艇外板屬大面積且局部深抽型特徵,成形時容易產生破裂與皺褶同時存在之缺陷問題,因此目前遊艇外板的製造仍有賴於焊接製程。遊艇外板材料係選用具耐腐蝕性的A5083-O,再針對遊艇外板之成品部份進行特徵歸納及成形性分析,將其難以克服之特徵造型,給予較佳化之餘肉造型(addendums)設計與製程參數,以改善鋁合金遊艇板件之沖壓成形技術問題。
zh_TW
dc.description.abstractIn recent year, customers had raising demands for the coziness of spaces and multi-functions, which makes the sizes and weights of vehicles increased. However, when facing the energy crisis and the deteriorating living environment, it is essential to decrease the emission of greenhouse gases. To produce light-weighted parts then becomes the goal of most sheet metal factories. In European and American countries, some factories have even launched aluminum alloy automotives and aluminum alloy yachts one after another.
The weight of aluminum alloy is approximately one-third of steel; as a result, aluminum alloy has gradually substituted for steel. Aluminum alloy bears its own advantages of light-weight and better corrosion resistance, but its formability is inferior to that of steel. In the stamping process, except that aluminum alloy would crack easily, the low elastic modulus makes the aluminum alloy easier to produce a significant springback defect, which would lead to variation of accuracy hard to grapple with. As a result, the design concept of stamping conventional steel sheets cannot be completely applied to the die design of aluminum alloy, which causes the tooling maker to spend more time and money to develop a set of stamping dies. And thus, the computer-aided engineering (CAE)technology becomes even more necessary in helping the die design.
It is well known that the material model including the yield criterion and the hardening rule plays an important role in the CAE analysis for predicting the springback. In the present study, the tension-compression reversal tests were conducted to obtain the stress-strain relations and the Bauschinger effect exhibited in the A5083-O and A6181-T4 sheets. The test results were fitted into different yield criteria and work hardening rules used in different finite element software. The finite element simulations were then preformed for V-bending and U-hat drawing of A5083-O and A6181-T4 sheets, and the results of springback and side-wall curl were compared with those obtained from experiments. It can be concluded from the comparison that the material model which includes the Bauschinger effect renders a more consistent results with the experimental data.
The formability of stamping an engine hood with A6181-T4 was also examined in the present study. The aging phenomenon of A6181-T4 was first observed from aging tests and the test results were included in the subsequent finite element simulations. In order to investigate the difference of forming characteristics between conventional steel and A6181-T4 in the stamping process of an engine hood, the effects of material properties, such as n-value, r-value and yield stress, on the different forming modes were systematically analyzed by the finite element simulations.
In addition, the stamping process of the outer panels of a yacht with A5083-O sheets was developed in the present study to replace the current welding process. Due to the V-shaped deep drawing, the defects of wrinkling and fracture are apt to occurring in the stamping process. In order to avoid the presence of these defects, the deformation mechanism in the stamping process of the yacht outer panels were characterized by the finite element simulations. An optimum die face shape with a proper addendum design was then developed according to the finite element analysis, and an actual stamping die set is scheduled to be manufactured following the suggested die design.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:32:23Z (GMT). No. of bitstreams: 1
ntu-100-R98522733-1.pdf: 7702334 bytes, checksum: 57e016b5cb25970ad7a84552b93e1bf8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄 I
圖目錄 V
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 5
1.4 研究方法與步驟 10
1.5 論文總覽 11
第二章 鋁合金材料性質之研究 13
2.1 鋁合金材料特性探討 13
2.1.1 鋁合金材料與熱處理種類 13
2.1.2 沖壓型鋁合金板件特性 15
2.2 鋁6181-T4之時效試驗 18
2.2.1 硬度與拉伸試驗規劃 20
2.2.2 硬度試驗結果 23
2.2.3 拉伸試驗結果 26
2.2.4材料模型之時效時間選擇 28
第三章 鋁合金材料模型之研究與回彈實驗驗證 30
3.1 降伏準則之研究 30
3.1.1 Hill48降伏準則之探討 31
3.1.2 Hill90降伏準則之探討 32
3.1.3 Barlat降伏準則之探討 38
3.2加工硬化準則之探討 41
3.2.1 等向硬化準則之探討 41
3.2.2 動態硬化準則之探討 42
3.3 Yoshida材料模型之研究 44
3.3.1 鋁合金拉壓實驗規劃 47
3.3.2 拉伸-壓縮實驗結果之探討 50
3.4鋁合金之Yoshida材料模型參數建立 55
3.4.1 A5083-O之Yoshida材料模型參數建立 56
3.4.2 A6181-T4之Yoshida材料模型參數建立 57
3.5 回彈實驗驗證 58
3.5.1 V型彎曲實驗驗證 59
3.5.2 U形帽狀(U-hat)成形實驗驗證 63
第四章 鋁合金與傳統鋼引擎蓋板成形差異 67
4.1 研究載具選擇與模面建立 67
4.2 鋁合金與傳統鋼引擎蓋板之模擬分析與實驗比對 68
4.3 材料之成形差異 72
4.3.1不同拉伸模式之CAE模型建立 73
4.3.2材料參數在不同拉伸模式之影響 76
4.4 模具特徵尺寸與製程參數之應用 83
4.4.1壓料力大小對成品拉伸之影響 83
4.4.2鋁合金與傳統鋼引擎蓋板之模具特徵尺寸差異 84
4.5有限元素軟體驗證 86
第五章 鋁合金遊艇外板特徵造型之研究 95
5.1遊艇外板特徵造型分析 95
5.2模面組成要素與成形性分析模面 98
5.2.1 模面組成要素 98
5.2.2 成形性分析模面組成 99
5.3成形性分析 102
5.3.1 成形性分析結果與缺陷探討 102
5.3.2 船鼻特徵造型之影響 107
5.4製程參數對成形性之影響 110
5.4.1 壓料力影響 110
5.4.2 材料外型影響 112
5.5成形性分析之缺陷歸納與改善對策 114
第六章 鋁合金遊艇外板之餘肉造型設計 116
6.1 基本餘肉造型設計 116
6.1.1壓料面造型設計 116
6.1.2 阻料條的應用 120
6.2 各部位餘肉造型設計 122
6.2.1 船艏之餘肉造型設計 123
6.2.2 反向船脊之餘肉造型設計 125
6.2.3 船艉底殼之餘肉造型設計 128
6.3 各材料模型回彈分析結果 130
第七章 結論 133
參考文獻 135
dc.language.isozh-TW
dc.subject鋁合金zh_TW
dc.subject餘肉造型zh_TW
dc.subject引擎蓋板zh_TW
dc.subject模具設計zh_TW
dc.subject包辛格效應zh_TW
dc.subject降伏準則zh_TW
dc.subject時效zh_TW
dc.subject回彈zh_TW
dc.subject沖壓成形zh_TW
dc.subjectA6181-T4zh_TW
dc.subject遊艇板件zh_TW
dc.subjectA5083-Ozh_TW
dc.subjectdie designen
dc.subjectaluminum alloyen
dc.subjectA5083-Oen
dc.subjectA6181-T4en
dc.subjectstampingen
dc.subjectspringbacken
dc.subjectagingen
dc.subjectyield criteriaen
dc.subjectBauschinger effecten
dc.subjectengine hooden
dc.subjectyacht outer panelsen
dc.subjectaddendumsen
dc.title鋁合金板件沖壓成形之研究zh_TW
dc.titleFormability Study for Stamping Aluminum Alloy Sheetsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃佑民,洪景華,黃庭彬
dc.subject.keyword鋁合金,A5083-O,A6181-T4,沖壓成形,回彈,時效,降伏準則,包辛格效應,引擎蓋板,遊艇板件,餘肉造型,模具設計,zh_TW
dc.subject.keywordaluminum alloy,A5083-O,A6181-T4,stamping,springback,aging,yield criteria,Bauschinger effect,engine hood,yacht outer panels,addendums,die design,en
dc.relation.page141
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
7.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved