Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37549
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorJian-Hao Hongen
dc.contributor.author洪健豪zh_TW
dc.date.accessioned2021-06-13T15:32:18Z-
dc.date.available2008-07-21
dc.date.copyright2008-07-21
dc.date.issued2008
dc.date.submitted2008-07-14
dc.identifier.citationAsahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., “Visible-light photocatalysis in nitrogen-doped Titanium oxides”, Science, 2001, 293, 269-271.
Bonsen, E. M., Schroeter, S., Jacobs, H., and Broekaert, J. A. C., “Photocatalytic degradation of ammonia with TiO2 as photocatalyst in the laboratory and under the use of solar radiation”, Chemosphere, 1997, 35, 1431-1445.
Bravo, A., Garcia, J., and Dome`nech, X. P., “Some aspects of the photocatalytic oxidation of ammonium ion by titanium dioxide”, J. Chem. Res., 1993, 376-377.
Choi, W., Lee, J., Kim, S., Hwang, S., Lee, M. C., and Lee, T. K., “Nano Pt particles on TiO2 and their effects on photocatalytic reactivity”, J. Ind. Eng. Chem., 2003, 9, 1, 96-101.
Du, G. H., Chen, Q., Che, R. C., Yuan, Z. Y., and Peng, L. M., “Preparation and structure analysis of titanium oxide nanotubes”, Appl. Phys. Lett., 2001, 79, 3702-3704.
Fujishima, A., and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 1972, 238, 37.
Ghicov, A., Ysuchiya, H., Macak, J.M., and Schmuki, P., ‘‘Titanium oxide nanotubes prepared in phosphate electrolytes’’, Electrochemistry Communications, 2005, 7, 505-509.
Hoyer, P., “Formation of a titanium dioxide nanotube array ”, Langmuir, 1996, 12, 1411-1413.
Hsu, M. C., Leu, I. C., Sun, Y. M., and Hon, M. H., “Fabrication of CdS/TiO2 coaxial composite nanocables arrays by liquid-phase deposition”, J. Cryst. Growth, 2005, 285, 642-648.
Hufschmidt, D., Bahnemann, D., Testa, J. J., Emilio, C. A., and Litter, M. I., “Enhancement of the photocatalytic activity of various TiO2 materials by platinisation”, Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 223-231.
Kasuga, T., Hiramatsui, M., Hoson, A., Sekino, T., Niihara, K., ‘‘Formation of titanium oxide nanotube’’, Langmuir, 1998, 14, 3160-3163.
Lee, J., Park, H., and Choi, W., “Selective photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water”, Environ. Sci. Technol, 2002, 36, 5462-5468.
Lee, X.T., L, L.F., Yang, L.F., Zhang, X.W., and Barford, J. “Nitrogen removal via coupled ammonia oxidation and nitrite reduction using Pt/TiO2 and photocatalysis”, Chinese Journal of Inorganic Chemistry, 2006, 22, 7, 1180-1186.
Morgado, E., Abreu, M.A.S., Pravia, O.R.C., Marinkovic, B.A., “A study on the structure and thermal stability of titanate nanotubes as a function of sodium content”, Solid State Sci, 2006, 8, 888-900.
Mercer, B. W., Ames, L. L., Touhill, C. J., Van Slyke, W. J., and Dean, R. B., “Ammonia Removal from Secondary Effluents by Selective Ion Exchange”, Jour. WPCF 42, 2, part2:R95.
Metcalf and Eddy, Inc., Wastewater Engineering: Treatment, Disposal and Reuse, 2nd, New York: McGraw-Hill, 1979.
Nakahira, A., Kato, W., Tamai, M., Isshiki, T., and Nishio, K., ”Synthesis of nanotube from a layered H2Ti4O9(H2O) in a hydrothermal treatment using various titania sources,” J. Mater. Sci., 2004, 39,4239-4245.
Nemoto J., Gokan N., Ueno H., and Kaneko M, “Photodecomposition of ammonia to dinitrogen and dihydrogen on platinized TiO2 nanoparticules in an aqueous solution”, Journal of Photochemistry and Photobiology A:chemistry, 2007,185, 295-300.
Nian, J. N., and Teng, H., “Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor”, Phys. Chem. B, 2006, 110, 4193-4198.
Pollema, C. H., Milosavljevic, E. B., Hendrix, J. L., Solujic, L., and Nelson, J. H., “Photocatalytic oxidation of aqueous ammonia (ammonium ion) to nitrite or nitrate at TiO2 particles”, Monatshefte fur Chemie, 1992, 123, 333-339.
Reynolds, T. D., and Richards, P. A., Unit operations and processes in environmental engineering, 2nd, PWS Publishing Company, 1996, 330-331.
Robinette, H. R., “Effects of selected sublethal levels of ammonia on the growth of channel catfish”, Prog. Fish-Cult, 1976, 38, 1, 26-29.
Sreethawong, T. and Yoshikawa, S., “Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts”, Catalysis Communications, 2005, 6, 661-668.
Štengl, V., Bakardjieva, S., Šubrt, J., Veçerníková, E., Szatmary, L., Klementová, M., Balek, V., “Sodium titanate nanorods: Preparation, microstructure characterization and photocatalytic activity”, Appl. Catal. B: Environ., 2006, 63, 20-30.
Subramanian, V., Wolf, E., and Kamat, P. V., “Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?”, J. Phys. Chem. B, 2001, 105, 11439-11446.
Sun, X., and Li, Y., “Synthesis and characterization of ion-exchangeable titanate nanotubes”, Chem. Eur. J., 2003, 9, 2229-2238.
Tsai, C. C., and Teng, H., “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment”, Chem. Mater, 2004, 16, 4352-4358.
Wang, A., Ddwards, J.G., and Davies, J.A., “Photooxidation of aqueous ammonia with titania-based heterogeneous catalysts”, Solar Energy, 1994, 52, 6, 459-466.
Weng, L. Q., Song, S. H., Hodgson, S., and Baker, A., “Synthesis and characterization of nanotubular titanates and titania”, J. Eur. Ceram. Soc, 2006, 26, 1405-1409.
Wright, J. M., Lindsay, W. T. Jr., and Druga, T. R., “The behavior of electrolytic solutions at elevated temperatures as derived from conductance measurements”, USAEC Comm. R&D report WAPD-TM-204, 1961, 36-67.
Wu, X., Jiang, Q. Z., Ma, Z. F., Fu, M., and Shangguan, W. F., “Synthesis of titania nanotubes by microwave irradiation”, Solid State Communication, 2005, 136, 513-517.
Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., and Zhang, S., ‘‘Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2”, Dalton Trans., 2003, 3898-3901.
Yu, J., Yu, H., Cheng, B., and Trapails, C., “Effects of calcinations temperature on the microstructures and photocatalytic activity of titanate nanotubes“, Journal of Molecular Catalysis A: Chemical, 2006, 249, 135-142.
Zhang, M., Jin, Z., Znang, J., Guo, X., Yang, J., Li, W., Wang, X., and Zhang, Z., “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2”, Journal of Molecular Catalysis A: Chemical, 2004, 217, 203-210.
Zhao, J., Wang, X., Chen, R., and Li, L., ‘‘Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Communications, 2005, 134, 705-710.
Zhu, X., Castleberry, S. R., Nanny, M., and Butler, E.C., “Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions”, Environ. Sci. Technol, 2005, 39, 3784-3791.
Zhu, X., Nanny, M.A., and Butler, E.C., “Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite”, Journal of Photochemistry and Photobiology A: Chemistry, 2007, 2-3, 289-294.
陳琪婷,「以二氧化錳催化降解水中氨氮之研究」,碩士論文,國立中山大學海洋環境及工程學系,2003。
陳志豪,「以微波水熱法合成光觸媒硫化鎘結合氧化鈦奈米管去除水中氨氮之研究」,碩士論文,國立台灣大學環境工程學研究所,2007。
歐信宏,「微波水熱法合成氧化鈦奈米管─特性鑑定與光催化潛勢之研究」,博士論文,國立台灣大學環境工程學研究所,2008。
劉文御,「行政院農業委員會水產試驗所專著:001 號」,2001,29-32、107-109。
歐陽嶠暉,「下水道工程學」,長松文化公司,2003,227。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37549-
dc.description.abstract利用光觸媒對氨氮進行光催化降解實驗,已被證實是一具可行性之處理方式,效率高且極具經濟性。因此本研究嘗試利用具ㄧ維結構與離子交換能力之氧化鈦奈米管作為光觸媒載體,選定Ni、Pd、Pt對其進行改質,評估金屬的不同屬性與負載比例改變對水中氨氮光催化降解效率之影響,以及產物之分布影響,後續並探討其反應機制。
當以Pd/TNTs與Pt/TNTs為光觸媒時,負載比例的提升,可有效增加光催化降解效率,且未見遮蔽效應之產生;除了顯示Pd與Pt適合作為氧化鈦奈米管之負載金屬外,無遮蔽效應的產生可歸因於氧化鈦奈米管獨特之離子交換特性。而當以Ni/TNTs為光觸媒時,負載比例的提升僅會使氨氮降解速率下降;推測Ni並無法有效抑制電子電洞對的再結合,反而因其本身佔據氧化鈦奈米管之活性位置,導致離子交換與吸附能力的下降與遮蔽效應的主導。
在產物分佈方面,Pd/TNTs傾向於生成亞硝酸鹽與硝酸鹽,當負載比例提升至某一程度,則會產生部分氮氣,但此時亞硝酸鹽與硝酸鹽仍為主要生成產物。Pt/TNTs相對於其它金屬負載型氧化鈦奈米管而言,在高負載比例情況下對氨氮有非常好的離子交換與吸附能力,此可能為Pt/TNTs高度選擇性光催化水中氨氮為氮氣之原因,以30% Pt/TNTs為例,有高達87.8%的氮氣產率,但確實之反應機制仍需藉由分析修飾觸媒之表面特性來加以確認。
zh_TW
dc.description.abstractThe photocatalytic oxidation technology applied on the removal of ammonia in water has been proved to be an effective and economical treatment process. Therefore in this research we chose titania nanotubes (TNTs) which have one-dimensional structure and ion exchangeability as photocatalyst. Meanwhile nickel, palladium and platinum were chose for modifying its surface. The effects of kind of metal, loading amount on degradation efficiency of ammonia and distribution of products were examined. Finally, we discussed the reaction mechanism.
When Pd/TNTs and Pt/TNTs were used as photocatalysts, the degradation efficiency of ammonia increased with the increase of loaded amount, indicating palladium and platinum are applicable to modify titania nanotubes surface. Also, there were no shielding effect occurred in this two case. It can be ascribed to the ion exchangeability of titania nanotubes. When Ni/TNTs were used as photocatalyst, the degradation efficiency of ammonia decreased with the increase of loaded amount. We supposed nickel loaded on titania nanotubes could not suppress the recombination of photo-holes and photo-electrons, but occupied active sites of titania nanotubes instead to result in the decrease of ion exchangeability and adsorption capacity. So inhibiting effect dominated the overall reaction in the case of Ni/TNTs.
Pd/TNTs prefer the formation of nitrite and nitrate regarding the distribution of products. Moreover, the loaded amount increased to a certain extent would lead to a few yield of nitrogen gas, yet nitrite and nitrate were still their primary products. Pt/TNTs with high loaded amount have good ion exchangeability and adsorption capacity for ammonia in comparison with the other two metal-loaded titania nanotubes. It may be the reason that Pt/TNTs are highly selective to produce nitrogen gas in the photocatalytic oxidation of ammonia. Take 30% Pt/TNTs for example, its yield of nitrogen gas was up to 87.8%. However, the actual reaction mechanism should be confirmed by analyzing surface property of metal-loaded titania nanotubes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:32:18Z (GMT). No. of bitstreams: 1
ntu-97-R95541119-1.pdf: 2611525 bytes, checksum: ec92678db5a491e5514659922fb1c354 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究內容 2
第二章 文獻回顧 3
2-1 氨氮簡介 3
2-1-1 氨的物化性質 3
2-1-2 氨氮的來源 6
2-1-3 氨氮的危害 7
2-2 光反應 10
2-2-1 光反應種類 10
2-2-2 氨氮的光催化技術 12
2-3 氧化鈦奈米管 14
2-3-1 氧化鈦奈米管之製備 14
2-3-2 氧化鈦奈米管酸洗影響 15
2-3-3氧化鈦奈米管之離子交換與吸附 16
2-3-4 氧化鈦奈米管之光催化特性 16
第三章 實驗方法與材料 18
3-1 實驗設計 18
3-2 實驗藥品與設備 18
3-2-1 藥品 18
3-2-2 設備 20
3-3 實驗方法與內容 22
3-3-1 反應材料之製備 22
3-3-2 背景實驗 23
3-3-3 液相氨氮光催化反應實驗 24
3-3-4 偵測氮氣實驗 25
3-3-5 亞硝酸鹽光催化反應實驗 25
3-4 分析系統與設備 26
3-4-1 觸媒物性化性分析 26
3-4-2 污染物與產物定量分析 28
第四章 結果與討論 31
4-1背景實驗 31
4-1-1 微波型TNTs之合成功率選擇 31
4-1-2 氨氮揮發實驗 33
4-1-3 直接光解實驗 34
4-1-4 金屬修飾氧化鈦奈米管之TPR實驗 35
4-2 金屬修飾之氧化鈦奈米管對氨氮降解之光催化反應實驗 38
4-2-1 Pd/TNTs對氨氮降解之光催化反應實驗 38
4-2-2 Pt/TNTs對氨氮降解之光催化反應實驗 46
4-2-3 Ni/TNTs對氨氮降解之光催化反應實驗 52
4-2-4 不同光催化劑對氨氮降解實驗之比較 57
4-3 氮氣偵測實驗 60
4-4 金屬修飾之氧化鈦奈米管對亞硝酸鹽之光催化反應實驗 63
4-5 氨氮之光催化氧化反應機制探討 66
第五章 結論與建議 70
5-1 實驗結論 70
5-2 建議研究方向 72
第六章 參考文獻 73
附錄 實驗數據 79
dc.language.isozh-TW
dc.title以金屬Ni、Pd、Pt修飾氧化鈦奈米管去除水中氨氮之研究zh_TW
dc.titlePhotocatalytic Oxidation of Aqueous Ammonia over Ni, Pd, Pt-modified Titania Nanotubesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉雅瑄,胡景堯
dc.subject.keyword氨氮,金屬負載,光催化,氧化鈦奈米管,二氧化鈦,zh_TW
dc.subject.keywordammonia,metal-loaded,photolysis,titania nanotubes,titanium dioxide,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2008-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved