請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37548
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅(Whei-May Lee) | |
dc.contributor.author | Guo-Hao Huang | en |
dc.contributor.author | 黃國豪 | zh_TW |
dc.date.accessioned | 2021-06-13T15:32:15Z | - |
dc.date.available | 2009-07-23 | |
dc.date.copyright | 2008-07-23 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-14 | |
dc.identifier.citation | 1. Adachi, K., Ohta, K., Mizuno, T., “Photocatalytic of Carbon Dioxide to Hydrocarbon Using Copper-Load Titanium Dioxide,” Solar Energy, 53, 187-190 (1994).
2. Adamson, A. W., Physical Chemistry of Surfaces, 4th ed., John Wiley & Sons, New York, chap. 17 (1982). 3. Alberici, R. M., Jardim, W. F., “Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide,” Applied Catalysis B: Environmental, 14, 58-68 (1997). 4. Altshuller, A. P., Cohen, I. R., “Application of diffusion cells to the production of Known concentrations of gaseous hydrocarbons,” Analytical Chemistry, 38, 802-810 (1960). 5. Ao, C. H., “Enhancement Effect of TiO2 Immobilized on Activated Carbon Filter for the Photodegration of Pollutions at Typical Indoor Air Level,” Applied Catalysis B: Environmental, 44, 191-205 (2003). 6. Arif, Ahmed A., Shah, Syed M., “Association between personal exposure to volatile organic compounds and asthma among US adult population,” Int Arch Occup Environ Health, 80, 711-719 (2007). 7. Atkinson, D., M. Harada, and A. I. Sanda, “Is there a P-wave bound state of WLWL? On the dynamical generation of a ρ meson in the σ model,” Phys. Rev. D, 46, 3884 (1992). 8. Beck Jens P., Astrid Heutelbeck, Hartmut Dunkelberg, “Volatile organic compounds in dwelling houses and stables of dairy and cattle farms in Northern Germany,” Science of the Total Environment, 372, 440–454 (2007). 9. Bender, A., L.K. Bui, M.A. Feldman, M. Larsson and N. Bhardwaj, “Inactivated Influenza Virus, When Presented on Dendritic Cells, Elicit Human CD8+ Cytolytic T Cell Responses,” Journal of Experimental Medicine, 182, 1663-1671 (1995). 10. Benefield, L.D., J. F. Judkins and B.L. Weand, Process chemistry for water & waste water treatment, Prentice Hall, (1982). 11. Bhowmick, M., Semmens, M. J., “Ultraviolet Phtooxidation for the Destruction of VOCs in Air,” Water Research, 28, 2407-2415 (1994). 12. Blake, N. R., Griffin, G. L., “Selectivity Control during the Photoassisted Oxidation of 1-Butanol on Titanium Dioxide,” J. Phys. Chem, 92, 5697-5701 (1988). 13. Cao Gang and Myoseon Jang, “Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx,” Atmospheric Environment, 41, 7603–7613 (2007). 14. Coggon David E., Clare Harris, Jason Poole, Keith T., Palmer, “Extended Follow-Up of a Cohort of British Chemical Workers Exposed to Formaldehyde,” Journal of the National Cancer Institute, 1608-1615, (2003). 15. Daisey, J. M., Angell, W. J., Apte, M. G., “Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information,” Journal Article. Meta-Analysis, Indoor Air, 13, 53-64 (2003). 16. Dalton, J. S., Janes, P. A., Jonesm N. G., Nicholson, J. A., Hallam, K. R., Allen, G. C., “Photocatalytic Oxidation of NOx Gases Using TiO2: A Surface Spectroscopic Approach,” Environmental Pollution, 120, 415-422 (2002). 17. D’Hennezel, O., Pichat, P., and Ollis, D. F., “Benzene and Toluene Gas-Phase Photocatalytic Degradation over H2O and HCl Pretreated TiO2: By-Products and Mechanisms,” J. Photochem. Photobio. A: Chem., 118, 197-204 (1998). 18. Dibble, L. A., and Raupp, G. B., “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,” Environ. Sci. & Technol., 26, 492-500 (1992). 19. Duan, X., Sun, D., Zhu, Z., Chen, X., Shi, P., “Photocatalytic Decomposition of Toluene by TiO2 film as photocatalysis,” J. Enviro. Sci. health, A, 37, 679-692 (2002). 20. Eddy, E. R., D. L. Stone, and E. F. Stone-Romero, “The effects of information management policies on reactions to human resource information systems: An integration of privacy and procedural justice perspectives,” Personnel Psychology, 52, 335-358 (1999). 21. Eduardo De Stefani1, Paolo Boffetta Paul Brennan, Hugo Deneo-Pellegrini1, Alvaro Ronco and Luis Pineyro Gutie’rrez, “Occupational exposures and risk of adenocarcinoma of the lung,” Uruguay Cancer Causes and Control, 16, 851–856 (2005). 22. Edwards, R. D., Jurvelin, J., Koistinen, K., Saarela, K., Jantunen, M., “VOC Source Identification from Personal and Residential Indoor, Outdoor and Workplace Microenvironment Samples in EXPOLIS-Helsinki, Finland,” Atmospheric Environment, 35, 4829-4841 (2001a). 23. Fogler, H. S., Elements of chemical reaction engineering, 3rd ed., Prentice Hall, (1999). 24. Fox, A. M., Dulay, M. T., “Heterogeneous Photocatalysis,” Chem. Rev., 93, 341-357 (1993). 25. Fujishima, A., Hashimoto, K., Watanabe, T., “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., 125, 128 (1999). 26. Girman, J. R., Hadwen, G. E., Burton, L. E., Womble S. E., McCarthy, J. F., “Individual volatile organic compound prevalence and concentrations in 56 buildings of the building assessment survey and evaluation (BASE) study, ” Indoor Environments Division, U.S. Environmental Protection Agency, USA (2000). 27. Griffin, R. J., Cocker, D. R., Seinfeld, J. H., Dabdub, D., “Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons,” Geophysical Research Letters, 2721-2724 (1999a). 28. Grosjean Daniel, In Ozone and Other Photochemical Oxidants, National Academy of Sciences, Washington, DC, 45-125 (1977). 29. Guo, H., Lee, S. C., Chan, L. Y., Li, W. M., “Risk assessment of exposure to volatile organic compounds in different indoor environments,” Environmental Research, 94, 57-66 (2004). 30. Hakola, H., Laurila, T., Rinne, J., and Puhto, K., “The ambient concent rations of biogenic hydrocarbons at a northern European, boreal site,” Atmospheric Environment, 34, 4971-4982 (2000). 31. Hathaway, G. L., Proctor, N. H., Hughes, J. P., and Fischman, M. L., Proctor and Hughes' chemical hazards of the workplace, 3rd ed., Van Nostraud Reinhold, New York (1991). 32. Hines, A. L., Tushar, K. G., Sudarshan, K. L., Richand, C. W. Jr., Indoor Air Quality & Control, PTR Prentice Hall Englewood Cliffs, New Jersey (1993). 33. Horacio Tovalin-Ahumada, Lawrence Whitehead, “Personal exposures to volatile organic compounds among outdoor and indoor workers in two Mexican cities,” Science of the Total Environment, 376, 60-71 (2007). 34. Howe CJ, Bowman CM, Dyer TA, Gray JC, “Localization of wheat chloroplast genes for the beta and epsilon subunits of ATP synthase,” Mol Gen Genet, 525–530 (1982a). 35. Howe CJ, Auffret AD, Doherty A, Bowman CM, Dyer TA, Gray JC, “Location and nucleotide sequence of the gene for the proton-translocating subunit of wheat chloroplast ATP synthase,” Proc Natl Acad Sci USA, 6903–6907 (1982b). 36. Hu, Z. S., Dong, J. X. and Chen, G. X., “Preparation of Nanometer Titanium Dioxide with n-Butanol Supercritical Drying,” Power Technology, 101, 205-210 (1999). 37. Huang, T. C. and Chen, D. H., “Kinetics of ozone decomposition in aqueous solution with and without ultraviolet radiation,” J. Chin. I. Ch.E. (Taiwan), 24, 207 (1993). 38. Hung, C. H., “Gas-phase photocatalytic degradation of trichloroethylene and formation of reaction products on immobilized titanium dioxide,” Ph. D. Dissertation, Purdue Univ., (1995). 39. Jacoby, W. A., Blake, D. M., Fennell, J. A., Boulter, J. E., and Vargo, L. M., “Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” J. Air Waste Manag. Assoc., 46, 891-898 (1996). 40. Jaeger, C. D., Bard, A. J., “Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate system, ” Journal Physical Chemistry, 24, 3146 (1979). 41. Jones, A. P., “Indoor Air Quality and Health,” Atmospheric Environment, 33, 4535-4564 (1999). 42. Jonsson, Asa M., Mattias Hallquist, Harald Saathoft, “Volatility of secondary organic aerosols from the ozone initiated oxidation of α-pinene and limonene,” Journal of Aerosol Science, 38, 843-852 (2007). 43. Karlberg, A.T., Boman, A., “Melin B Animal-experiment on the allergenicity of d-limonene-the citrus solvent Aannals of occupation hygiene,” 35, 419-426 (1991). 44. Kim, S. B., Sung, C. H., “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Applied Catalysis B: Environmental, 35, 305-315 (2002). 45. Kim, S. B., Hwang, H. T. and Hong, S. C., “Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst,” Chemosphere, 48, 437-444 (2002). 46. Kim, S., Park, J. K. and Hee-Dong, C., “Pyrolysis Kinetics of Scrap Tire Rubbers. I: Using DTG and TGA,” J. Environ. Eng., (2003). 47. Klenø, J., Wolkoff, P., “Changes in eye blink frequency as a measure of trigeminal stimulation by exposure to limonene oxidation products, isoprene oxidation products, and nitrate radicals,” Int. Arch. Occup. Environ. Health, 77, 235-243 (2004). 48. Kreyling, WG, Semmler M, Moller W., “Dosimetry and toxicology of ultrafine particles,” Journal of Aerosol Medicine, 140–152 (2004). 49. Ku, Y., Shen, Y. S. and Ma, C. M., “Decomposition of Gaseous Trichloroethylene in a Photoreactor with TiO2-coated Nonwoven Fiber Textile,” Applied Catalysis B: Environmental, 34, 181-190 (2001). 50. Laidler, K. J., Meiser, J. H., Physical Chemistry, John Wiley & Sons, Inc, (1982). 51. Laia, H. K., Kendallb, M., Ferriera, H., Lindupc, I., Almd, S., O. Hanninend, Jantunend M., Mathyse P., Colvilea R., Ashmoref M.R., Cullinang P., Nieuwenhuijsena M.J., “Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK,” Atmospheric Environment, 38 6399–6410 (2004). 52. Langlais, B., Reckhow, D. A., and Brink, D. B., “Ozone in Water Treatment-Application and Engineering,” Lewis Publishers, (1991). 53. Le, MP. L, Ge. K, SJ. L, “Volatile Organic Compounds and Pulmonary Function in the Third National Health and Nutrition Examination Survey,” Environ Health Persp, 114, 1210-1214 (2006). 54. Lee, S. C., Lam Sanches, Kin Fai Ho, “Characterization of VOCs, ozone, and PM10 emissions from office equipment in an environmental chamber,” Building and Environment, 36, 837-842 (2001). 55. Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering, January, (1982) 56. Leovic, K.W., Sheldon, L.S., Whitaker, D.A., Hetes, R.G., Calcagin, J.A., Baskir, J.N., “Measurement of indoor air emissions from dry-process photocopy machines,” J. Air & Waste Manage Assoc., 46, 821-29 (1996). 57. Leungsakul, S., Jeffries, H. E. and Kamens, R. M., “A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight,” Atmospheric environment, 39, 7063-7082 (2005). 58. Lin, C. H., Li, C. S., “Effectiveness of Titanium Dioxide Photocatalyst Filters for Controlling Bioaerosol,” Aerosol Sci. Technol. 37, 162-170 (2003). 59. Linsebigler, A. L., Lu, G. and Yates, Jr. J.T., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chem. Rev., 95, 735-758 (1995). 60. Lucian O. Copolovici, Ulo Niinemets, “Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids,” chemosphere, (2005). 61. Luo, J. C., Kuo, H. W., Cheng, T. J., Chang, M. J. W., “Pulmonary function abnormality and respiratory tract irritation symptoms in epichlorohydrin-exposed workers in Taiwan,” American Journal of Industrial Medicine, 43, 440-446 (2003). 62. Mackay, D., “Finding Fugacity Feasible,” Environmental Science & Technology, 13, 1218-1223 (1979). 63. Mackay, D., Paterson, S., “Calculating Fugacity, ” Environmental Science & Technology, 15, 1006-1014 (1981). 64. Mackay, D., Multimedia Environmental Models: The Fugacity Approach, 2nd ed., Lewis Publishers Inc, Boca Raton. (2001). 65. Martin, A. D. and W. J. Sritling, “Parton distributions of proton,” Physical review D, 11 (1994). 66. Maira, A. J., Yeung, K. L., Soria, J., Coeonado, J. M., Belver, C., Lee, C. Y., Augugliaro, V., “Gas-Phase Photo-Oxidation of Toluene Using Nanometer-Size TiO2 Catalysts,” Applied Catalysis B: Environmental, 29, 327-336 (2001). 67. Mallard, B.A., Wilkie, B.N., Kennedy, B.W., Gibson, J., Quinton, M., “Immune responsiveness in swine: eight generations of selection for high and low immune response in Yorkshire pigs,” Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, 1–8, (1998). 68. Mariola Sliwinska-Kowalskaa, Ewa Zamyslowska-Szmytkea, Wieslaw Szymczakb, Piotr Kotyloa, Marta Fiszera, Wiktor Wesolowskic, Malgorzata Pawlaczyk-Luszczynskaa, “Exacerbation of noise-induced hearing loss by co-exposure to workplace chemicals Environmental,” Toxicology and Pharmacology , 19, 547–553 (2005). 69. Mills, A., Davis, R. H., Worsley, D., “Water Purification by Semiconductor Photocatalysis,” Chem. Soc. Revs, 22, 417-425 (1993). 70. Mølhave, L., Clausen, G., Berglund, B., Ceaurriz, J., Kettrup, A., Lindvall, T., Maroni, M., Pickering, A. C., Risse, U., Rothweiler, H., Seifert, B., Younes, M., “Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations,” Indoor Air, 7, 225-240 (1997). 71. Nagda, B. A., Gurin, P., and Lopez, G. E., “Transformative pedagogy for democracy and social justice,” Race Ethnicity & Education, 165-191 (2003). 72. Nawrot T., Nemmar A., Nemery B., “Update in environmental and occupational medicine,” American Journal of respiratory and cirtical caremedicine , 143, 948-952 (2006). 73. Nizkorodov Sergey A., Maggie L. Walser, Jiho Park, Anthony L. Gomez, and Ashley R. Russell, “Photochemical Aging of Secondary Organic Aerosol Particles Generated from the Oxidation of d-Limonene,” J. Phys. Chem. A, 111, 1907-1913 (2007). 74. Nøjgaard, Jacob Klenø, Christensen, Karl Bang, Peder Wolkoff, “The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein,” Toxicology Letters , 156, 241–251 (2005). 75. Obee, T. N., and Hay, S. O., “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania,” Environ. Sci. Technol, 31, 2034-2038 (1997). 76. Obee, T., Brown, R. T., “TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene,” Environmental Science & Technology, 29, 1223-1231 (1995). 77. Ollis, D. F., “Photoreactors for Purification and Decomposition of Air, The 1st International Conference on TiO2 Photocatalytic and Treatment of Water and Air,” London, Ontario, Canada, 481-494 (1992). 78. O’Keeffee, A. E., Ortman, G. C., “Primary standard for trace gas analysis,” Analytical Chemistry, 38, 760-763 (1966). 79. Perry, R. H., Green, D. W., Maloney, J. O. Perry's chemical engineers' handbook 7th ed. McGraw-Hill, New York, (1997). 80. Pichat, P., Disdier, J., Hoang-Van, C., Mas, D., Goutailler, G., Gaysse, C., “Purification/Deodorization of Indoor Air and Gaseous Effluents by TiO2 Photocatalysis,” Catalysis Today, 63, 362-369 (2000). 81. Pinkerton, L. E., Hein, M. J. and Stayner, L. T., “Mortality among a cohort of garment workers exposed to formaldehyde,” an update Environ. Med., 61, 193-200 (2004). 82. Porg, Ozone in the United Kingdom. Fourth report of the Photochemical Oxidants Review Group, London: Department of the Environment, Transport and the Regions (1997). 83. Robinson, J., Nelson, W. C., “National Human Activity Pattern Survey Data Base. United States Environmental Protection Agency,” Research Triangle Park, NC, (1995). 84. Rolle-Kampczyk UE., Rehwagen M., Diez U., Richter M., Herbarth O., Borte M., “Passive smoking, excretion of metabolites, and health effects results of the Leipzig's Allergy Risk Study (LARS),” Archives of Environmental Health, 57, 326-31 (2002). 85. Romero, M., Blanco, J. Sacchiz, B., Vidal, A., Malato, S., Cardona, A. I., and Garcia, E., “Solar Photocatalytic Degradation of Water and Air Pollutant: Challenges and Perspectives, ” Solar Energy, 66, 169-182 (1999). 86. Rothenberger, G., Heilweil, E. J., Moore, R., Velsko, S., and Hochstrasser, R. M., “Picosecond processes in chemical systems: vibrational relaxation,” Laser Chemistry, 109-132 (1983). 87. Rumchev, K., Spickett, J., Bulsara, M., Phillips, M. and Stick, S., “Association of domestic exposure to volatile organic compounds with asthma in young children,” Thorax, 59, 746-751 (2004). 88. Sahyun, M. R.V., and Serpone, N., “Photophysics of all-trans-retinoic acid (ATRA) chemisorbed to nanoparticulate TiO2: evidence for TiO2 to ATRA energy transfer and reverse electron transfer sensitization,” Journal of Photochemistry and Photobiology A:Chemistry, 231-238 (1998). 89. Saijo, Y., “Symptoms in relation to chemicals and dampness in newly built dwellings,” Int Arch Oxxup Environ Health, 77, 461-470 (2004). 90. Saito, T., Iwase, T., Horie, J., Morioka, T., “Antibaterial Effect of Powdered TiO2 with Photocatalystic Reaction on Streptococcus Mutans Strain AHT,” J. Dent. Health, 36, 490-491 (1992). 91. Sarwar, G. and Corsi, R., “The effects of ozone/limonene reactions on indoor secondary organic aerosols,” Atmospheric Environment, 41, 959–973 (2007). 92. Schwarzenbach, R.P., Gschwend, P. M., lmboden, D. M., Environmental Organic Chemistry, Wiley-Interscienece: New York (1993) 93. Schwartz, Robert N., “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Physical Review B, 8 (1994). 94. Seinfeld, H. J., Pandis, S. N.,Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., p.147 (1998). 95. Shang, J., Du, Y., Xu, Z., “Photocatalytic Oxidation of Heptane in the Gas-Phase over TiO2,” Chemosphere, 46, 93-99 (2002). 96. Shen, Y. S., Ku, Y., “Decomposition of Gas-Phase Chloroethenes by UV/O3 Process,” Water Research, 32, 2669-2679 (1998). 97. Sterling, E.M., ASHRAE Transction, 91,611-622. 98. Steele, W.V., R.D. Chirico, A.B. Cowell, Knipmeyer, S.E. and Nguyen, A., “Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, tert-Amyl Methyl Ether, trans-Crotonaldehyde, and Diethylene Glycol,” J. Chem. Eng. Data, 47, 667-688. (2002). 99. Surratt, J. D., Murphy, M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A. and et al, “Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene,” J. Phys. Chem. A. Mol. Spectrose. Kinet. Environ. Gen. Theory, 110, 9665-9690 (2006). 100. Takigawa Tomoko, Tokushi Horike, Yasuhiro Ohashi, Hiroyuki Kataoka , Da-Hong Wang, Shohei Kira, “Were Volatile Organic Compounds the Inducing Factors for Subjective Symptoms of Employees Working in Newly Constructed Hospitals,” Inc. Environ Toxicol, 19, 280–290 (2004). 101. Uysal N., Schapira R. M., “Effects of ozone on lung function and lung diseases. Obstructive, occupational, and environmental diseases,” Current Opinion in Pulmonary Medicine, 9, 144-150 (2003). 102. Vasanthi, R., Sunil Robert, J. Laumbach, Kinal, J., Patel, Barbara, J., Turpin, Ho-Jin Lim, Howard, M., Kipen, Jeffrey, D., Laskin, Debra, L., Laskin, “Pulmonary effects of inhaled limonene ozone reaction products in elderly rats,” Toxicology and Applied Pharmacology , 222, 211–220 (2007). 103. Wainman Thomas, Zhang Junfeng, Weschler, Charles J., and Lioy Paul J., “Ozone and Limonene in indoor Air: A Source of Submicron Particle Exposure,” Environmental and Occupational Health Science Instiute, (2000). 104. Wang, K. H., Tsai, H. H., and Hsieh Y. H., “The Kinetics of Photocatalytic Degradation of Trichloroethylene in Gas Phase over TiO2 Supported on Glass Bead,” Appl. Catal. B: Environ., 17, 313-320 (1998). 105. Williams, P., Benton, L., Warmerdam, J., Sheehans, P., “Comparative risk analysis of six volatile organic compounds in California drinking water,” Environmental Science & Technology, 36, 4721-4728 (2002). 106. Wolkoff, P., Kleno, J., Troiano, P., Piccoli, B., “Eye complaints in the office environment: precorneal tear film integrity influenced by eye blinking efficiency,” Occup. Environ. Med, 62, 4-12 (2005). 107. Won, D. J., Wang, C. H., Jang, H. K. and Choi ,D. J., “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on tructural and optical properties,” Appl. Phys. A, 73, 595-600 (2001). 108. Yu, C., Crump, D., “A Review of the Emission of VOCs from Polymeric Materials Used Buildings,” Building and Environment, 33, 357-374 (1998). 109. Zanobetti, A., Schwartz, J., Samoli, E., Gryparis, A., Touloumi, G., Peacock J., Anderson, RH., Le Tertre A., Bobros, J., Celko, M., Goren,A., Forsberg, B., Michelozzi, P., Rabczenko, D., Hoyos, SP., Wichmann, HE., Katsouyanni, K., “The temporal pattern of respiratory and heart disease mortality in response to air pollution,” Environmental Health Perspectives, 111, 1188-1193 (2003). 110. Zhao, J., Yang, X., “Photocatalytic Oxidation for Indoor Air Purification: A interature Review,” Building and Environment, 30, 645-654 (2003). 111. Zuraimia, M. S., C.A. Rouletb, Thama, K. W., Sekhara, S. C., David Cheonga K.W., Wonga, N. H., Leec, K. H., “A comparative study of VOCs in Singapore and European office buildings,” Building and Environment, 41, 316–329 (2006). 112. 余國賓,以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究,台灣大學環境工程研究所博士論文,2006 113. 鄭嵐,臭氧之觸媒分解,國立台灣大學環境工程研究所碩士論文,1996 114. 榮蟠興,溼度因子對臭氧之觸媒分解的影響,國立台灣大學環境工程研究所碩士論文,1997 115. 陳志明,精油衍生之次級有機氣膠調查及其對芳香療館室內空氣品質影響之探討,長榮大學職業安全與衛生研究所碩士論文,2007 116. 馬志明,以紫外光/二氧化鈦程序處理氣相三氯乙烯汙染物反應行為之研究,國立台灣科技大學化學工程技術研究所碩士論文,1998 117. 申永順,以高級氧化程序處理揮發性有機汙染物反應行為及光反應器設計之研究,國立台灣科技大學化工系博士論文,1998。 118. 方萬東,水中有機磷農藥去除技術之評估,國立台灣大學水資源及環境工程學系碩士論文,1992 119. 林永璋,以臭氧�紫外光程序去除乙二胺四乙酸之研究,國立中山大學環境工程研究所碩士論文,2003 120. 藤山鳥昭,橋本和仁,渡部俊也,“光觸媒之奧秘”,日本實業出版社,2000 121. 劉國棟,“VOC管制趨勢展望”,工業污染防治,48期,1993。 122. 呂宗昕,圖解奈米科技與光觸媒,商周出版社,2003 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37548 | - |
dc.description.abstract | 揮發性有機物(Volatile organic compounds, VOCs)一直是室內環境中的主要汙染物,且被認為是引起病態大樓症候群的原因。其中,像是木質傢俱及裝潢塗料或是清潔劑及香水等消費型產物甚至是使用精油芳香療法來試圖達到提神或改善室內空氣的作用時,其所產生的檸檬烯等生物源揮發性有機物會有不同程度的逸散。長時間的暴露加上檸檬烯與氧化物質反應產生次級氣膠的能力很強,所以本實驗選擇檸檬烯當作目標汙染物。
而揮發性有機物的處理方法很多,其中,由於光催化反應在室溫下有處理效率高、較少的能源消耗及氧化完全的優點,且較無操作成本過高的問題,所以成為近來發展最廣的室內空氣清淨技術。加上有文獻指出臭氧對光催化反應有正面的效應,且臭氧本身與檸檬烯的反應性很強,所以實驗添加臭氧。但由於臭氧在室內環境中有其規範濃度值,所以本實驗探討不同環境條件下添加臭氧後,光催化增進效率與尾氣中臭氧之去除效率間的關係。 影響光催化效率的因子有很多,但本實驗僅探討反應物的濃度、相對濕度、氣體流率及臭氧濃度的影響,而將其他條件固定,像是溫度控制在 25±1℃、紫外光波長為 254 nm、固定紫外光強度及選用奈米級之 Degussa P25 TiO2為實驗觸媒。 實驗結果顯示,在氣體流率大於 1600 ml/min時,氣相質傳效應可以忽略,且此時光催化反應動力模式符合雙分子之 Langmuir-Hinshelwood model。而光催化反應中的轉化率及二氧化碳產率都隨著檸檬烯濃度的增加而遞減,但反應之氧化速率則相反,其中臭氧去除效率從 45.01%提升到 53.77%,且反應後之臭氧濃度值多為接近或低於 50 ppb。而由反應動力模式回歸模擬可得在相對濕度20%、50%、80%檸檬烯之氫氧根自由基反應常數(k_OH)分別為 15.6、19.7、16.0 μ-mole/m2-s,彙整文獻中之 toluene、 p-xylene、 m-xylene、 mesitylene物種之氫氧根自由基反應常數,可知光觸媒反應之速率常數(k)與氫氧根自由基反應常數無論在相對濕度為何,皆是呈現一個線性的正相關。而由反應動力模式回歸模擬也可得不同濕度下檸檬烯與水分子之 Langmuir吸附常數(K_1 、K_2),彙整上列文獻中之物種可得其 Langmuir吸附常數的倒數與亨利定律常數(K_H)無論相對溼度為何皆是呈現一個線性的正相關。 在光催化反應中,隨著相對濕度增加,反應轉化率及二氧化碳產率皆在相對濕度約 40%前後分別呈現提升及下降的趨勢,中間產物的殘餘量則呈現持續下降,但在相對濕度約 40%後呈現趨緩的現象。然而添加臭氧可使得觸媒在相對濕度提升至 30%時,就可以有效的減少中間產物殘餘量,延長觸媒的使用年限,且可以在高相對濕度下,將中間產物殘餘量控制在 10~20%間,使礦化更完全。 在光觸媒反應中,臭氧濃度的增加會增加反應的轉化率及二氧化碳產率,但卻會造成中間產物的殘餘量增加。由實驗結果可得檸檬烯之臭氧增進效應指標為 4.15×〖10〗^(-4) μ-mole-m-2-s-1/ppb-O3,結合文獻中上述物種更可知,化合物之氫氧根自由基反應速率常數與臭氧之增進效應指標可能呈現正相關的趨勢。 在光催化反應中,當臭氧濃度增加時,反應之臭氧去除效率是呈現上升的趨勢,其中,有無檸檬烯之臭氧去除效率分別從 50.13%提升到 89.93%及從 40.23%提升到 77.29%,發現檸檬烯確實會與臭氧反應,且當臭氧濃度增加時,光催化的反應速率也會提高,所以,推測光催化反應速率與臭氧的去除效率有關。 | zh_TW |
dc.description.abstract | Volatile organic compounds(VOCs) is one of the major indoor air pollutants, and is considered as an cause for sick building syndrome. Using wood furniture , paint, cleanser and perfume even for freshening and improving indoor air quality by Aromatherapy will produce biogenic volatile organic compounds like limonene. Because of long time exposure and possible production of secondary organic aerosols from reaction between limonene and oxidant so in this essay I choose limonene as a target pollutant in this study.
Among the indoor air-cleaning technology for controlling VOCs, photocatalytic oxidation (PCO) reaction is widely used in recent years because of the advantages such as higher cleaning efficiency, the lower energy consumption, and the fully oxidation and lower operation cost. Some researches have demonstrated that ozone has positive effects on effectiveness of PCO, and also ozone has high oxidation with limonene. The objective of this research was to investigate the enhancement effect of ozone on VOCs removal efficiency and the ozone removal efficiency. There are many factors influencing PCO efficiency. In this study, the effects of limonene concentration, reactive humidity, gas flow rate and the ozone concentration on the removal of limonene were investigated. Other factors were fixed like controlling temperature on 25±1℃, using UV light source (wavelength is 254 nm), constant UV intensity, and choosing Degussa P25 TiO2 for the catalyst in this study. The effect of gas-phase mass transfer was negligible when gas flow rate was higher than 1600 ml/min. And the PCO kinetics fitted Langmuir-Hinshelwood model for bimolecular competitive adsorption form. The VOCs conversion and CO2 evolution decreased with increasing limonene concentrations. However, the VOCs oxidation rate has opposite effect. In this experiment, removal efficiency of ozone ranged from 45.01% to 53.77%. After the reaction, concentration of ozone are close or below to 50 ppb. The VOCs-hydroxyl radical rate constants (k_OH) of limonene is 15.6, 19.7, 16.0 μ-mole/m2-s respectively for humidity 20%, 50%, 80%. PCO rate constants of toluene, p-xylene, m-xylene, mesitylene, and limonene were proportional to k_OH no matter what humidity is. Getting together with Langmuir adsorption constants of the above-mentioned VOCs and water. A linear positive relationship was found between reciprocal of Langmuir adsorption constants and Henry’s Law constants no matter what reactive humidity is. Increasing reactive humidity showed a dual effect on VOCs conversion, CO2 evolution, and the residual intermediate. The reactive humidity turning point is 40%. The experiment showed that adding ozone can reduce it significantly when the humidity move up to 30%. And it showed that in high humidity, adding ozone can control the residual intermediate on 10~20%, and extending the catalyst effectiveness. In PCO reaction, the VOCs conversion and CO2 evolution increased with increasing concentration of ozone. But it will enhance the residual intermediate relatively. The slopes of plot of VOCs oxidation rates & ozone concentration were defined as enhancement indices of ozone. The experiment result showed enhancement indices of ozone on limonene is 4.15×〖10〗^(-4) μ-mole-m-2-s-1/ppb-O3. Getting together with above-mentioned species, enhancement indices of ozone were proportional to k_OH. In PCO reaction, removing efficiency of ozone and VOCs oxidation increased with increasing the ozone removal efficiency. The ozone removal efficiency in the presence and absence of limonene ranged from 50.13% to 89.93% and from 40.23% to 77.29%. So this study found that VOCs oxidation is related to removing efficiency of ozone. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:32:15Z (GMT). No. of bitstreams: 1 ntu-97-R95541128-1.pdf: 1288988 bytes, checksum: 6b609fd29a8b48b99eddd215aca99285 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄 1
圖目錄 IV 表目錄 VIII 摘要 i Abstract iii 符號說明 v 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 4 1-3 研究內容與方法 4 1-4 研究流程 5 第二章 文獻回顧 6 2-1 揮發性有機物之來源、種類及健康影響 6 2-1-1 揮發性有機化合物之來源 6 2-1-2 室內揮發性有機物之種類及常見物種 8 2-1-3 室內揮發性有機物之風險與健康影響 10 2-1-4 室內生物源揮發性有機物 13 2-1-4-1 精油的種類 14 2-1-4-2 檸檬烯在室內之濃度值 15 2-1-4-3 檸檬烯對健康的危害 17 2-1-4-4 萜烯類與強氧化物反應產生之二次氣膠 18 2-1-4-5 影響次級有機氣膠形成之因子 20 2-1-5 小結 22 2-2 光觸媒催化反應之種類、原理與機制及其應用 23 2-2-1 光觸媒之應用 23 2-2-2 光觸媒之種類及其特性 26 2-2-3 光觸媒的製備 27 2-2-4 光觸媒催化反應之原理 29 2-2-4-1 光化學反應之原理 30 2-2-4-2 光催化反應之原理 30 2-2-4-3 光觸媒催化反應之機制 33 2-2-4-4 光催化反應產生之自由基 35 2-2-4-5 氫氧根自由基的反應機制 36 2-3 光觸媒反應去除VOCs之相關研究 37 2-3-1 影響光催化活性之可能因素 37 2-3-2 光催化反應之動力模式 45 2-3-3 小結 49 2-4 高級氧化程序(UV/O3)去除VOCs之相關研究 50 2-4-1 臭氧之來源特性及其對健康的危害 50 2-4-1-1 臭氧的來源 51 2-4-1-2 臭氧對人體的危害 52 2-4-2 臭氧與VOCs反應之機制 53 2-4-3 UV/O3去除VOCs之相關研究 56 2-4-4 環境條件對臭氧去除率的影響 57 2-4-5 小結 58 第三章 研究方法 59 3-1 實驗系統 59 3-1-1 實驗設備 62 3-1-2 VOCs產生單元 63 3-1-3 光觸媒披覆單元 66 3-1-4 光觸媒光反應器單元 66 3-1-5 VOCs採樣收集單元 67 3-1-6 VOCs分析單元 69 3-1-7 VOCs分析實驗步驟 72 3-2 實驗藥品及實驗固定條件之選擇 74 3-2-1 實驗改變之條件因子 75 第四章 結果討論 77 4-1 limonene濃度之影響及模式參數與limonene特性之影響 77 4-1-1 limonene濃度對光觸媒反應速率之影響 77 4-1-2 光觸媒反應速率常數與limonene-OH反應常數之影響 86 4-1-3 Langmuir吸附常數與亨利定律常數之關係 91 4-1-4 limonene濃度對於TiO2/UV/O3、TiO2/UV及UV/O3程序之影響 98 4-2 氣體流率之影響 102 4-2-1 氣體流率對光觸媒反應速率之影響 102 4-2-2 氣體流率對於TiO2/UV/O3、TiO2/UV及UV/O3程序之影響 106 4-3 相對濕度之影響 108 4-3-1 相對溼度對光觸媒反應速率之影響 108 4-3-2 相對溼度對於TiO2/UV/O3、TiO2/UV及UV/O3程序之影響 113 4-4 臭氧濃度之影響 118 4-4-1 臭氧濃度對反應速率之影響 118 4-4-2 臭氧濃度對於TiO2/UV/O3及UV/O3程序之影響 121 4-5 光觸媒反應對臭氧去除效率之影響 126 4-5-1 limonene濃度對臭氧去除效率之影響 126 4-5-2 停留時間(retention time)對臭氧去除效率之影響 128 4-5-3 相對溼度對臭氧去除效率之影響 130 4-5-4 臭氧濃度對臭氧去除效率之影響 132 第五章 結論與建議 134 5-1 結論 134 5-2 建議 140 參考文獻 142 | |
dc.language.iso | zh-TW | |
dc.title | 以紫外光/臭氧程序增進光觸媒對室內生物源揮發性有機物去除效率之研究 | zh_TW |
dc.title | Enhancement Effect of UV/O3 on the Effectiveness of Photocatalytic Oxidation for Removing Indoor Biogenic Volatile Organic Compounds | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅金翔,曾昭衡 | |
dc.subject.keyword | 光觸媒,臭氧,揮發性有機物,檸檬烯, | zh_TW |
dc.subject.keyword | photocatalysis,ozone,VOCs,limonene, | en |
dc.relation.page | 155 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。