請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37506
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林欽塘 | |
dc.contributor.author | Hsiao-Chien Chuang | en |
dc.contributor.author | 莊筱倩 | zh_TW |
dc.date.accessioned | 2021-06-13T15:30:36Z | - |
dc.date.available | 2016-10-07 | |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-10 | |
dc.identifier.citation | Aouacheria A., Brunet F. and Gouy M., Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators, Mol. Biol. Evol. 2005, 22, pp. 2395–2416.
Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, and Henegouwen PB. The epidermal growth factor. Cell Biol Int 1995;19:413–430. Brady HJ, Gil-Gómez G. Bcl-2 and Bax function independently to regulate cell death. Nat Gene. 1997 Aug;16(4):358-63. Cao Y, Miao XP, Huang MY, Deng L, Hu LF, Ernberg I, Zeng YX, Lin DX, Shao JY. Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population. BMC Cancer. 2006;6:167 Chan SL, Cui Y, van Hasselt A, Li H, Srivastava G, Jin H, Ng KM, Wang Y, Lee KY, Tsao GS, Zhong S, Robertson KD, Rha SY, Chan AT, Tao Q. The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Invest 2007 Jul;87(7):644-50 Chang KP, Wu CC, Chen HC, Chen SJ, Peng PH, Tsang NM., Lee LY., Liu SC, Liang Y, Lee YS, Hao SP., Chang YS and Yu JS. Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis: Potential usage of cystatin A for predicting nodal stage and poor prognosis. PROTEOMICS 2010;10: 2644–2660. Chen CJ, Lieng KY, Chang YS et al. Multiple risk factors of nasopharyngeal carcinoma: Epstein-Barr virus, malarial infection, cigarette smoking and familial tendency. Anticancer Res 1990; 10, 547–554 Chen HK, Pai CY, Huang JY and Yeh NH. Human Nopp140, Which Interacts with RNA Polymerase I: Implications for rRNA Gene Transcription and Nucleolar Structural Organization. Mol. Cell. Biol 1999; 19:8536–8546 Chen S, Gao G, Chen W, Lü Q, Tang S, Hua Z, Ye W, Gu D, Wang S, Zhang Y. VEGF-specific siRNAs modified with 2'-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model. Sci China C Life Sci. 2008 Feb;51(2):104-10. Cheng YJ, Hildesheim A, Hsu MM, Chen IH, Brinton LA, Levine PH, Chen CJ, Yang CS. Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control. 1999;10(3):201-7. Chow LSN, Lo KW, Kwong J, To KF., Tsang KS, Lam CW, Dammann R and Huang DP RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. International Journal of Cancer 2004;109: 839–847. de Vathaire F, Sancho-Garnier H, de The´ H, Pieddeloup C, Schwab G, Ho JH, Ellousz R, Michaeu C, Cammoun M, Cachin Y, de The´ G. Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): A multicenter follow-up study. Int J Cancer 1988;42:176–181. Deng L, Zhao XR, Pan KF, Wang Y, Deng XY, Lu YY, Cao Y. Cyclin D1 Polymorphism and the Susceptibility to NPC Using DHPLC. ACTA BIOCHIMICA et BIOPHYSICA SINICA 2002, 34(1): 16-20 Derynck R. The physiology of transforming growth factor- . Adv Cancer Res 1992;58:27–52. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Patho 2007; 35, 495–516. Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C. Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. J Biol Chem. 1992;267(29):20577–20583 Gao CF, Ren S, Zhang L, Nakajima T, Ichinose S, Hara T, Koike K, Tsuchida N. Caspase-Dependent Cytosolic Release of Cytochrome c and Membrane Translocation of Bax in p53-Induced Apoptosis. Experimental Cell Research 2001;265, 145–15 Gao X, Wang Q, Li W, Yang B, Song H, Ju W, Liu S, Cheng J. Identification of nucleolar and coiled-body phosphorprotein 1(NOLC1) minimal promoter regulated by NF-kB and CREB. BMB Rep. 2011;44(1)70-5 Ge H, Lin HX, Xiao XS, Guo L, Xu HM, Wang Xin and et al. Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma. J Transl Med. 2010; 8: 94. Gupta P, Su ZZ, Lebedeya IV, Sarkar D, Saune M, Emdad L and et al. mda-7/IL-24: Multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacology & Therapeutics 2006; 11(3)596-628. Henle W, Ho HHC, Henle G, Chau JCW, Kwan HC. Nasopharyngeal carcinoma: Significance of changes in Epstein-Barr virus related antibody pattern following therapy. Int J Cancer 1977;20:663–672 Hildesheim A., Anderson LM, Chen C J et al., “CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan,” Journal of the National Cancer Institute 1997;89,(16):1207–1212. Hildesheim A., Apple R. J., Chen C. J., et al., “Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan,” Journal of the National Cancer Institute, 2002; 94(23)1780–1789 Ho CK, Lo WCH, Huang PH, Wu MT, Christiani DC, Lin CT. Suspected nasopharyngeal carcinoma in three workers with long term exposure to sulphuric acid vapour. Occup Environ Med 1999;56(6):426-8. Ho, J.H. Incidence of nasopharyngeal cancer in Hong Kong. UICC Bull Cancer 1971;9: 5 Hsu YT, Wolter KG, and Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis Proc. Natl. Acad. Sci. 1997;94:3668–3672 Huang DY, Lin YT, Jan PS, Hwang,Y. Liang ST and Peng Y et al., Transcription factor SOX-5 enhances nasopharyngeal carcinoma progression by down-regulating SPARC gene expression, J Pathol 2008;214 pp. 445–455 Huang, H., Zhou, M. and Li, G.-Y. BRD7, a novel bromodomain gene, inhibits G1–S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. Journal of Cellular Physiology 2004; 200: 89–98. Hwang, YC, Lu, TY, Huang, DY, Kuo, YS, Kao, CF, Yeh, NH, Wu, HC and Lin, CT. NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential for TP53 to regulate MDM2 expression. Am. J.Pathol 2009;175, 342-354 Karray H, Ayadi W, Fki L,Hammami A, Daoud J, Drira MM, Frikha M, Jlidi R, Middeldorp JM. Comparison of three different serological techniques for primary diagnosis and monitoring of nasopharyngeal carcinoma in two age groups from Tunisia. J Med Virol 2005;75:593–602. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994 Apr 15;73(8):2013-26. Khor LY, Desilvio M, Al-Saleem T, et al. MDM2 as a predictor of prostate carcinoma outcome: an analysis of Radiation Therapy Oncology Group Protocol 8610. Cancer 2005;104:962–7. Kluck R.M., Bossy-Wetzel E., Green D.R. and Newmeyer D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science1997;275, pp. 1132–1136. Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 1992;80:879-86 Ku B, Liang C, Jung JU, Oh BH. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Research 2011;21:627–641 Kumar V, Bustin SA, and McKay IA. Transforming growth factor alpha. Cell Biol Int 1995;19:373–388. International Agency for Research on Cancer, International Association of Cancer Registries. Cancer incidence in five continents. World Health Organization 1976. Isaac C, Yang Y, Meier UT. Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J. Cell Biol 1998; 142(2);319-29 Issinger OG. Casein kinases: pleiotropic mediators of cellular regulation. Pharmacol. & Ther. 1993; 59, 1-30. Li D, Meier U.T., Dobrowolska G. and Krebs E.G.. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J. Biol. Chem. 1997;272, pp. 3773–3779. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91(4):479-89. Liebowitz D. “Nasopharyngeal carcinoma: the Epstein-Barr virus association,” Seminars in Oncology 1994; 21(3)376–381. Lin CT, Chan WY, Chen W, Huang HM, Wu HC, Hsu MM, Chuang SM, and Wang CC. Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 1993; 68:716–727. Lin CT, Dee AN, Chen W, and Chan WY. Association of Epstein-Barr virus, human papilloma virus, and cytomegalovirus in nine nasopharyngeal carcinoma cell lines. Lab Invest 1994;71:731–736. Lin CT, Kao HJ, Lin JL, Chan WY, Wu HC, Liang ST. Response of nasopharyngeal carcinoma cells to Epstein-Barr virus infection in vitro. Lab Invest 2000;80(8);1140-60 Lin CT, Lin CR, Tan GK, Chen W, Dee AN, Hsu MM, and Chan WY. The mechanism of Epstein-Barr virus infection in nasopharyngeal carcinoma cells. Am J Pathol 1997b;150:1745–1756. Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM, and Chuang SM. Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest1990;62:713–724. Lin HS, Berry, GJ, Sun Z, and Fee WE, Jr Cyclin D1 and p16 expression in recurrent nasopharyngeal carcinoma. World J. Surg. Oncol 2006;4 :62 Lin YC, You L, Xu Z, He B, Mikami I, Thung E et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun 2006;341:635–640 Liston, P, Fong, WG, Kelly, NL, et al: Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol 2001 3:128–133. Liu FF. Novel gene therapy approach for nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12(6):505-515. Liu H, Zhang, Niu Z, Zhou M, Peng C and Li X. et al., Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells, BMC Cancer 2008; 8, p. 253 Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP. High Frequency of Promoter Hypermethylation of RASSF1A in Nasopharyngeal Carcinoma. Cancer Res 2001;61 3877 Lo PHY, Lung HL, Cheung AKL, Apte S, Chan KW, Kwong FM and et al. Extracellular Protease ADAMTS9 Suppresses Esophageal and Nasopharyngeal Carcinoma Tumor Formation by Inhibiting Angiogenesis. Cancer Res 2010; 70, 5567 Lo YMD, Chan LYS, Lo KW et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 1999;59:1188–1191 Lung HK, Cheung AKL, Xie D, Cheng Y, Kwong FM, Murakami Y, Guan XY, Sham JS, Lung ML et al. TSLC1 Is a Tumor Suppressor Gene Associated with Metastasis in Nasopharyngeal Carcinoma. Cancer Res 2006; 66:9385-9392 Mäkitie Antti A, MacMillan C, Ho J, Shi Wei, Lee A, O’Sullivan B et al. Molecular Oncology, Markers, Clinical Correlates: Loss of p16 Expression Has Prognostic Significance in Human Nasopharyngeal Carcinoma. Clin Cancer Res 2003; 9:2177-2184. McDermott, A.L., Dutt, S.N. & Watkinson, J.C. The aetiology of nasopharyngeal carcinoma. Clin. Otolaryngol. Allied Sci 2001;26, 82–92. Meier UT. Comparison of the rat nucleolar protein Nopp140 with its yeast homolog SRP40. J. Biol. Chem. 1996; 271, 19376-19384. Meier, UT and Blobel G A nuclear localization signal binding protein in the nucleolus. J. Cell Biol 1990;111, 2235-2245. Menedez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nature Reviews Cancer 2009; 9, 724-737 Meier, U. T. and Blobel, G. Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 1992;70, 127-138. Miau L.H., Chang C.J., Tsai W.H. and Lee S.C., Identification and characterization of a nucleolar phosphoprotein, Nopp140, as a transcription factor. Mol. Cell. Biol. 1997; 17, pp. 230–239 Momand, J., Zambetti, G.P., Olson, D.C., George, D. and Levine, A.J.. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69, pp. 1237–1245. Naegele RF, Champion J, Murphy S, Henle G, Henle W. Nasopharyngeal carcinoma in American Children: Epstein-Barr virus-specific antibody titers and prognosis. Int J Cancer 1982;29:209–212. Niedobitek G, young LS, Sam CK, Brooks L, Prasad U, Rickinson AB. Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas. Am J Pathol 1992; 140(4)879-87. Ng MH, Chan KH, Ng SP, Zong YS. Epstein-Barr virus serology in early detection and screening of nasopharyngeal carcinoma. Ai Zheng 2006; 25: 250–256 Nonoyama, Y., Huang, C.H., Pagano, J., Klein, G. and Singh, S. DNA of Epstein-Barr virus detected in tissues of Burkitt’s lymphoma and nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. USA 1973; 70, 3265-3268. Nouso K, Thorigeirsson SS, Battula N. Stable expression of human cytochrome P450IIE1 in mammalian cells: metabolic activation of nitrosodimethylamine and formation of adducts with cellular DNA. Cancer Res 1992; 52:1796-800. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74:609–19 Pai CY and Yeh NH, Cell Proliferation-Dependent Expression of Two Isoforms of the Nucleolar Phosphoprotein P130. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 1996; 221, 581–587 Pai CY, Chen HK, Sheu HL, Yeh NH Cell cycle-dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. J Cell Sci 1995;108:1911–1920 Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J, eds. Cancer incidence in five continents, vol 7. IARC 1997; 143: 814–15 Peng C, Liu HY, Zhou M, Zhang LM Li XL. Shen SR and Li GY. BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem 2007; 303(1-2):141-9 Pepperkok R, Lorenz P, Ansorge W, Pyerin W. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem. 1994; 269(9):6986–6991 Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets. 2005; 5:27–41. Renault T.T., Manon S., Bax: Addressed to kill. Biochimie 2011; doi:10.1016/j.biochi.2011.05.013 Rous GC, Walrath J, Stayner LT, Kaplan SA, Flannery JT Blair A. Nasopharyngeal cancer, sinonasal cancer and occupation related to formaldehyde: A case control study. J Natl Cancer Inst 1987; 76:1221. Santini J, Formento JL, Francoual M, Milano G, Scheneider M, Dassonville O, and Demard F. Characterization, quantification, and potential clinical value of the epidermal growth factor receptor in head and neck squamous cell carcinomas. Head Neck 1991; 3:132–139. Shammugaratnam K., Sobin L. H.: Histological typing of tumours of the upper respiratory tract and ear, 2nd ed. New York; Springer-Verlag;1991 Sheu LF, Chen A, Lee HS, Hsu HY, Yu DS. Cooperative interactions among p53, bcl-2 and Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma cells. Pathol Int. 2004 Jul;54(7):475-85 Shi, W., Bastianutto, C., Li, A., Perez-Ordonez, B., Ng, R., Chow, K.-Y., Zhang, W., Jurisica, I., Lo, K.-W., Bayley, A., Kim, J., O'Sullivan, B., Siu, L., Chen, E. and Liu, F.-F. Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling. International Journal of Cancer 2006; 119: 2467–2475. Song LB, Li J, Liao WT et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest. 2009; 119: 3626–36 Stevens SJC, Verkuijlen SAWM, Zwaan MC, Middeldorp JM. Epstein-Barr virus (EBV) serology, but not EBV DNA load, for predicting distant metastases in a juvenile Caucasian nasopharyngeal carcinoma (NPC) patientwithout clinical response upon EBV lytic induction therapy. Head Neck 2006; 28:1040–1045. Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, et al. Transient Tumor-Fibroblast Interactions Increase Tumor Cell Malignancy by a TGF-β Mediated Mechanism in a Mouse Xenograft Model of Breast Cancer. PLoS ONE 2010;5(3): e9832. Sun Y , Yi H , Zhang PF , Li MY , Li C, F Li, Peng F and et al. Identification of differential proteins in nasopharyngeal carcinoma cells with p53 silence by proteome analysis. FEBS Letters 2007; 581(1)131-139. Tiwawech D, Srivatanakul P, Karalak A and Ishida T. “Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma,” Cancer Letters 2006; 241(1)135–141. Toshiyuki Miyashita and John C. Reed. Tumor suppressor p53 is a direct transcriptional activator of the Human bax gene. Cell 1995; 80, 293-299. Tsai ST, Jin YT, Mann RB, Ambinder RF. Epstein-Barr virus detection in nasopharyngeal tissues of patients with suspected nasopharyngeal carcinoma. Cancer 1998; 15(8)1449-53 Tripathi SC, Matta A, Kaur J, Grigull J, Chauhan SS, et al. 2011 Overexpression of Prothymosin Alpha Predicts Poor Disease Outcome in Head and Neck Cancer. PLoS ONE 6(5): e19213. Tsai YT, Lin CI, Chen HK, Lee KM, Hsu CY, Yang SJ, Yeh NH. Chromatin tethering effects of hNopp140 are involved in the spatial organization of the nucleolus and the rRNA gene transcription. J Biomed Sci 2008; 15:471–486. Untawale S, Zorbas MA, Hodgson C, Coffey RJ, Gallick GE, North SM, Wildrick DM, Olive M, Blick M, Yeoman LC, and Boman BM. Transforming growth factor- production and autoinduction in a colorectal carcinoma cell line (DiFi) with an amplified epidermal growth factor receptor gene. Cancer Res 1993; 53:1630–1636. Vaux D, Bax and Bcl2 Cell Death Enhancers and Inhibitors. Encyclopedia of Biological Chemistry 2004, 152-154 Wang GL, Lo KW, Tsang KS, Chung NYF, Tsang YS, Cheung ST, Lee JCK and Huang DP. Inhibiting tumorigenic potential by restoration of p16 in nasopharyngeal carcinoma. British Journal of Cancer 1999; 81(7), 1122–1126 Wang Q, He W, Lu C, Wang Z, Wang J, Giercksky KE, Nesland JM, Suo Z. Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res. 2009 Apr;29(4):1233-41. Wolf H, Zur Hausen H, Becker V. EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nature 1973; 244;245-7 Wolter KG. Hsu YT, Smith CL, Nechushtan A, Xi XG, and Youle RJ. Movement of Bax from the Cytosol to Mitochondria during Apoptosis J. Cell Biol. 1997; 139:1281–1292 WHO-IARC. Epstein-Barr virus. IARC monographs on the evaluation of carcinogenic risks in humans. Lyon: Publ. IARC Press. 1997; 70. 47–373. Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol. Biol. Cell 2000;11, 567–577. Yu M.C., Garabrant D.H., Huang T.B. et al. Occupational and other non-dietary risk factors for nasopharyngeal carcinoma in Guangzhou, China. Int. J. Cancer 1990; 45, 1033–1039 Yu, M.C., Nichols, P.W., Zou, X.N., Estes, J. and Henderson,B.E. Induction of malignant nasal cavity tumour in Wistar rats fed Chinese salted fish. Br J Cancer 1989; 60: 198. Xiang, Y., Yao, H., Wang, S., Hong, M., He, J., Cao, S., Min, H., Song, E. and Guo, X. Prognostic Value of Survivin and Livin in Nasopharyngeal Carcinoma. The Laryngoscope 2006; 116: 126–130. Xu C, Xu W, Palmer AE, Reed JH. BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 2008; 283(17):11477–11484. Zhang M, Li X and Zhou K. Bax inhibitor-1 mediates apoptosis-resistance in human nasopharyngeal carcinoma cells. Molecular and Cellular Biochemistry 2010; 333:1-2:1-7 Zhou, J., Ma, J., Zhang, B.-C., Li, X.-L., Shen, S.-R., Zhu, S.-G., Xiong, W., Liu, H.-Y., Wu H,Lu T,Lee J, et al. MDM2 expression in EBV-infected nasopharyngeal carcinoma cells. Lab Invest 2004; 84: 1547–1556. Zong YS, Sham JS, Ng MH, Ou XT, Guo YQ, et al. Immunoglobulin A against viral capsid antigen of Epstein-Barr virus and indirect mirror examination of the nasopharynx in the detection of asymptomatic nasopharyngeal carcinoma. Cancer 1992; 69: 3–7. Zou H, Henzel WJ, Liu X, Lutschg A, Wang. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90 (3) 405-13. Zur Hausen H, Schulte-Holthausen H, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplasmic carcinomas of the nasopharynx. Nature 1970; 228:1056-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37506 | - |
dc.description.abstract | 鼻咽癌好發於東南亞國家。雖然早期EB病毒被認為和鼻咽癌的發生有很大的關係,但是近期許多的研究報導都認為EB病毒並不是導致鼻咽癌發生的原因而是促使鼻咽癌惡化的因素。因此,有關於鼻咽癌癌化的分子機制仍然需要被深入探討。為了探討有關鼻咽癌的分子機制,先前我們實驗室用利用PCR-SelectTM cDNA相減雜交的方式及基因晶片分析比較正常的鼻咽細胞和鼻咽癌細胞之後發現NOLC1基因的表現量高於正常的鼻咽細胞。而後,我們發現NOLC1基因和TP53基因協同調控MDM2的基因表現。為了更深入探討是否NOLC1基因和TP53基因協同調控更多TP53調控的基因,我們用lentiviral shRNA transfection系統干擾NOLC1基因的表現量,藉由qRT-PCR及西方墨點法皆發現受TP53調控的細胞凋亡基因Bax也受NOLC1基因調控,接著再利用螢光素酶檢測法發現NOLC1調控Bax的promoter位置也正好是TP53調控Bax的promoter位置。接著我們在讓鼻咽癌短暫高量表現NOLC1基因也發現Bax基因有微量上升,但是其蛋白量沒有顯著上升,這表示其中勢必有其他因子干擾Bax基因的上升。深入探討NOLC1蛋白及TP53蛋白的關係,我們發現這兩個蛋白並沒有互相結合。接著,我們觀察NOLC1基因本身對整個鼻咽癌細胞株的影響發現在NOLC1基因短暫高量表現後,利用TUNEL assay檢測到細胞凋亡的細胞減少了,但是在看MTT assay後並沒有觀察到細胞生長速度的增加。然而我們用cDNA microarray卻觀察到在當NOLC1基因表現上升後,很多致癌基因表現量上升另外也有很多抑癌基因表現量下降,這表示NOLC1基因在鼻咽癌細胞株勢必扮演一個促使鼻咽癌細胞癌化的因素。 | zh_TW |
dc.description.abstract | Nasopharyngeal Carcinoma (NPC) has higher incidence in Southeastern Asia as compared to other populations in the world. Although it was proposed that Epstein-Barr virus (EBV) is closely associated with NPC pathogenesis, many studies showed that EBV behaves more likely as an enhancer but not an initiator. Thus, the molecular mechanisms involved in the pathogenesis of NPC remained to be fully analyzed. Previously, using PCR-selectTM cDNA subtractive hybridization with microarray analysis our laboratory has shown that NOLC1 gene expression was upregulated in most NPC cell lines. Moreover, NOLC1 acts as an enhancer to coactivate with TP53 to regulate MDM2 expression. In order to investigate whether this is a general phenomenon in most TP53- regulated genes, in this study, lentivirus transfection system was used to establish stable NOLC1- knockdown NPC cell lines. By using quantitative real time PCR and Western blotting, we found that when NOLC1 was downregulated, the expression of TP53- regulated apoptosis gene, such as Bax, was also inhibited. The luciferase assay further supported that NOLC1 could regulate Bax promoter activity at its p53-responsive promoter region. Luciferase assay also showed that TP53 requires NOLC1 for coactivation of Bax expression. In other words, NOLC1 cooperates with TP53 to regulate the Bax expression is similar as MDM2 expression regulated by both genes. However, when NOLC1 was transiently overexpressed in NPC cell lines, we found modertate increase of Bax mRNA expression and but did see upregulation of Bax protein expression, indicating that the proliferating NPC cells may have other mechanism to suppress or enhance degradation of Bax protein. This result suggests that NOLC1 plays a role as an enhancer to cooperate with PT53 to regulate PT53-regulated target Bax gene expression. However, co-immunoprecipitation of Western blot analysis and NOLC1 and p53 colocalization of both proteins did not suggest these two proteins can bind together. Furthermore, we analyzed apoptosis behavior after NOLC1 overexpression by TUNEL assay. We found that overexpressed NOLC1 resulted in fewer apoptotic cells. However, proliferation rate is not enhanced after NOLC1 overexpression. Also, cDNA microarray analysis of NOLC1 overexpressed NPC cells showed a group of oncogenes upregulated and some oncosuppressor genes downregulated, suggesting that NOLC1 may also play some role in regulation o NPC tumorgenesis. In conclusion, NOLC1 not only can co-activate with TP53 to regulate the oncogene MDM2 expression but also the Bax gene in NPC pathogenesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:30:36Z (GMT). No. of bitstreams: 1 ntu-100-R98444003-1.pdf: 4503307 bytes, checksum: 10b48c5a7b7a90a52069dfa8630939f8 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員審定書......i
致謝 Acknowledgement.....ii 中文摘要.....iv Abstract.....v List of Figures.....ix List of Tables.....x Introduction.....1 Nasopharyngeal carcinoma (NPC).....1 Molecular Biomarkers and prognostic factors of NPC.....4 NOLC1 gene.....6 Relationship between NOLC1, MDM2 and TP53.....7 Bax gene.....8 Materials and Methods.....11 1. Cell culture.....11 2. Extraction of RNA and Preparation of cDNA.....11 3. Quantitative real-time PCR (qRT-PCR) .....13 4. Statistical analysis of qRT-PCR results.....13 5. Amplification and Extraction of plasmids.....13 6. Establishment of stable shNOLC1 NPC cell lines by lentiviral vector system......14 7. Western Blotting..... 16 8. Luciferase Reporter Assay System.....17 9. Establishment of transient NOLC1 overexpression cell line .....18 10. TUNEL assay.....19 11. Co-immunorecipitation.....19 12. Double immunofluorescence.....20 13. Scratch Wound Healing Assay.....21 14. MTT Assay .....21 15. Microarray analysis.....21 Results.....23 Establishment of stable shNOLC1 transfected NPC cell lines.....23 NOLC1 regulates Bax and p21 mRNA level in NPC-TW03 cell line......24 NOLC1 inhibition down-regulates Bax mRNA gene in NPC-TW09 cell line......24 Bax protein expression is inhibited in two shNOLC1 NPC cell lines......25 NOLC1 overexpression results in an increase in Bax mRNA and but not protein level......25 NOLC1 overexpression results in fewer apoptotic cells in NPC cell lines......26 NOLC1 regulates Bax expression by binding to its TP53 responsive promoter region .....26 Double localization did not reveal co-localization of TP53 and NOLC1 in NPC-TW03 cells......27 Co-immunoprecipitation does not reveal direct interaction of TP53 and NOLC1.....28 Overexpression of NOLC1 in NPC cell lines does not reveal higher proliferation rate.....29 Overexpression of NOLC1 demonstrates a slightly higher migration rate in NPC cells......29 Discussion.....30 Figures.....38 Tables.....52 References.....58 | |
dc.language.iso | en | |
dc.title | NOLC1與P53協同調控Bax基因表現及其調控鼻咽癌腫瘤生長之機制 | zh_TW |
dc.title | NOLC1 Cooperates with TP53 to Regulate Bax Gene Expression and May Play A Role in Regulation of NPC Tumorigenesis | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張逸良 | |
dc.contributor.oralexamcommittee | 吳漢忠,李明學,蘇燦隆 | |
dc.subject.keyword | 鼻咽癌,nucleolar and coiled-body phosphoprotein 1(NOLC1),Bax,細胞凋亡,cDNA微陣列, | zh_TW |
dc.subject.keyword | Nasopharyngeal carcinoma (NPC),nucleolar and coiled-body phosphoprotein 1(NOLC1),Bax,apoptosis,cDNA microarray, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-10 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 病理學研究所 | zh_TW |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。