請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37498
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 常蘭陽 | |
dc.contributor.author | Yin-Wen Yen | en |
dc.contributor.author | 顏吟紋 | zh_TW |
dc.date.accessioned | 2021-06-13T15:30:17Z | - |
dc.date.available | 2009-08-08 | |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-15 | |
dc.identifier.citation | 1. Douglas Vernimmen, et al. (2007). 'Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression.' EMBO J. 26 (8): 2041-51.
2. Bas Tolhuis, et al. (2002). 'Looping and interaction between hypersensitive sites in the active beta-globin locus.' Mol Cell. 10 (6):1453-65. 3. Alla V. Tsytsykova, et al. (2007). 'Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers.' Proc Natl Acad Sci U S A. 104 (43): 16850-5. 4. Tom Misteli (2007). 'Beyond the sequence: cellular organization of genome function.' Cell 128 (4): 787-800. 5. Padraic P. Levings and Jo¨ rg Bungert (2002). 'The human beta-globin locus control region.' Eur J Biochem. 269 (6): 1589-99. 6. Justin M O’Sullivan, et al. (2004). 'Gene loops juxtapose promoters and terminators in yeast.' Nat Genet. 36 (9): 1014-8. 7. Miguel Martin, et al (2005). 'Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis.' Cell. 123 (7): 1227-40. 8. Adele Murrell, et al. (2004). 'Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops.' Nat Genet. 36 (8): 889-93. 9. Shin-ichi Horike, et al. (2005). 'Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome.' Nat Genet. 37 (1): 31-40. 10. Peter R. Cook (1999). 'The organization of replication and transcription.' Science. 284 (5421): 1790-5. 11. Ivan Rasˇ ka, et al. (2006). 'Structure and function of the nucleolus in the spotlight.' Curr Opin Cell Biol. 18 (3): 325-34. 12. Martin Thompson, et al. (2003). 'Nucleolar clustering of dispersed tRNA genes.' Science. 302 (5649): 1399-401. 13. Charalampos G. Spilianakis, et al (2005). 'Interchromosomal associations between alternatively expressed loci.' Nature 435 (7042): 637-45. 14. Stavros Lomvardas, et al (2006). 'Interchromosomal interactions and olfactory receptor choice.' Cell. 126 (2): 403-13. 15. Jian Qun Ling, et al. (2006). 'CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1.' Science. 312 (5771): 269-72. 16. Jeroen Essers, et al. (2006). 'DNA damage repair: anytime, anywhere?' Curr Opin Cell Biol. 18 (3): 240-6. 17. Karen J. Meaburn, et al. (2007). 'Spatial genome organization in the formation of chromosomal translocations.' Semin Cancer Biol. 17 (1): 80-90. 18. Emílie Luká1ová, et al. (1997). 'Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia.' Hum Genet. 100 (5-6): 525-35. 19. Jeffrey J Roix, et al. (2003). 'Spatial proximity of translocation-prone gene loci in human lymphomas.' Nat Genet. 34 (3): 287-91. 20. Wendy A. Bickmore and Peter Teague (2002). 'Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population.' Chromosome Res. 10 (8): 707-15. 21. Wouter de Laat and Frank Grosveld (2003). 'Spatial organization of gene expression: the active chromatin hub.' Chromosome Res. 11 (5): 447-59. 22. Job Dekker, et al. (2002). 'Capturing chromosome conformation.' Science. 295 (5558): 1306-11. 23. He´le`ne Hage`ge, et al. (2007). 'Quantitative analysis of chromosome conformation capture assays (3C-qPCR).' Nat Protoc. 2 (7): 1722-33. 24. Zhihu Zhao, et al. (2006). 'Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions.' Nat Genet. 38 (11): 1341-7. 25. Frederick K. Racke, et al. (2001). 'A potential role for protein kinase C-epsilon in regulating megakaryocytic lineage commitment.' J Biol Chem. 276 (1): 522-8. 26. Nicole R. Murray, et al. (1993). 'Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for proliferation.' J Biol Chem. 268 (21): 15847-53. 27. Roman Herrera, et al. (1998). 'A role for the MEK/MAPK pathway in PMA-induced cell cycle arrest: modulation of megakaryocytic differentiation of K562 cells.' Exp Cell Res. 238 (2): 407-14. 28. Annem. Whalen, et al. (1997). 'Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase.' Mol Cell Biol. 17 (4): 1947-58. 29. Chi Dug Kang, et al. (1996). 'Signaling mechanism of PMA-induced differentiation of K562 cells.' Biochem Biophys Res Commun. 221 (1): 95-100. 30. Harry Mellor and Peter J. Parker (1998). 'The extended protein kinase C superfamily.' Biochem J. 332 ( Pt2): 281-92. 31. Yasutomi Nishizuka (1992). 'Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C.' Science. 258 (5082): 607-14. 32. Yoshihiko Ueda, et al. (1996). 'Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf.' J Biol Chem. 271 (38): 23512-9. 33. David R. Phillips, et al. (1988). 'The platelet membrane glycoprotein IIb-IIIa complex.' Blood. 71 (4): 831-43. 34. Georges Uzan, et al. (1991). 'Tissue-specific expression of the platelet GPIIb gene.' J Biol Chem. 266 (14): 8932-9. 35. Marie-Helene Prandini, et al. (1996). 'The tissue-specific transcriptional regulation of the megakaryocytic glycoprotein IIb gene is controlled by interactions between a repressor and positive cis-acting elements.' Blood. 88 (6): 2062-70 36. Valerie Lemarchandel, et al. (1993). 'GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression.' Mol Cell Biol. 13 (1): 668-76. 37. Florence Martin, et al. (1993). 'The transcription factor GATA-1 regulates the promoter activity of the platelet glycoprotein IIb gene.' J Biol Chem. 268 (29): 21606-12. 38. Karen L. Block, et al. (1996). 'An Ets/Spl interaction in the 5' flanking region of the megakaryocyte-specific alpha-IIb gene appears to stabilize Spl binding and is essential for expression of this TATA-less gene.' Blood. 88 (6): 2071-80. 39. Yaping Shou, et al. (1998). 'An Sp1-binding silencer element is a critical negative regulator of the megakaryocyte-specific alphaIIb gene.' J Biol Chem. 273 (10): 5716-26. 40. Michael A. Thornton, et al. (2002). 'Identification of distal regulatory regions in the human alpha IIb gene locus necessary for consistent, high-level megakaryocyte expression.' Blood. 100 (10): 3588-96. 41. Lyubomira Chakalova, et al. (2005). 'Replication and transcription: shaping the landscape of the genome.' Nat Rev Genet. 6 (9): 669-77. 42. B. Franklin Pugh and Robert Tjian (1991). 'Transcription from a TATA-Iess promoter requires a multisubunit TFIID complex.' Genes Dev 5: 1935-45. 43. Gary Brewer (2000). 'Regulation of c-myc mRNA decay in vitro by a phorbol ester-inducible, ribosome-associated component in differentiating mgakaryoblasts.' J Biol Chem. 275 (43): 33336-45. 44. Xiao-Fang Huo, et al. (2006). 'Differential expression changes in K562 cells during the hemin-induced erythroid differentiation and the phorbol myristate acetate (PMA)-induced megakaryocytic differentiation.' Mol Cell Biochem. 292 (1-2): 155-67. 45. Cheng-Chung Liu, Yu-Ling Chou and Lan-Yang Ch'ang (2004). 'Down-regulation of human NDR gene in megakaryocytic differentiation of erythroleukemia K562 cells.' J Biomed Sci. 11 (1): 104-16. 46. Padma L. Channavajhala, et al. (2005). 'hKSR-2 inhibits MEKK3-activated MAP kinase and NF-kappaB pathways in inflammation.' Biochem Biophys Res Commun. 334 (4): 1214-8. 47. Xuening Wang, et al. (2007). 'Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D (3) and is required for optimal cell differentiation.' Exp Cell Res. 313 (14): 3034-45. 48. R. A. Merrill, et al. (2002). 'A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos.' Proc Natl Acad Sci U S A. 99 (6): 3422-7. 49. Katherine L. Hammond, et al. (1998). 'Mammalian and Drosophila dachshund genes are related to the Ski proto-oncogene and are expressed in eye and limb.' Mech Dev. 74 (1-2): 121-31. 50. Kongming Wu, et al. (2006). 'DACH1 is a cell fate determination factor that inhibits cyclin D1 and breast tumor growth.' Mol Cell Biol. 26 (19): 7116-29. 51. Hiroaki Matsushita, et al. (1999). 'The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution.' FEBS Lett. 443 (3): 348-52. 52. Simon Dowler, et al. (2000). 'Identification of pleckstrin - homology- domain - containing proteins with novel phosphoinositide-binding specificities. ' Biochem. J. 351: 19-31. 53. Joanne Meerabux, et al. (1996). 'A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas.' Cancer Res. 56 (3): 448-51. 54. Adam Jarmuz, et al. (2002). 'An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22.' Genomics. 79 (3): 285-96. 55. Lin Li, et al. (2004). 'Gene regulation by Sp1 and Sp3.' Biochem Cell Biol. 82 (4): 460-71. 56. Guo-Ling Zhou, et al. (2006). 'Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes.' Mol Cell Biol. 26 (13): 5096-105. 57. Meng Xu and Peter R. Cook (2008). 'Similar active genes cluster in specialized transcription factories.' J Cell Biol. 181 (4): 615-23. 58. Wen Su, et al. (1991). 'DNA looping between sites for transcriptional activation: self-association of DNA-bound Sp1.' Genes Dev 5 (5): 820-6. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37498 | - |
dc.description.abstract | 於1990年,美國國家衛生院和能源部提出了人類基因體計畫並在2003年將人類基因體定序完成。此計畫的目的是希望能夠針對演化、發育、分化和疾病的產生做更深入地探討。早期在研究人類基因體時都認為DNA是單純的由線性序列組成,但事實上會經過纏繞和折疊形成具有三度空間結構的染色體。染色體的空間結構組織對基因體的功能有很大的影響力,例如DNA複製、轉錄和DNA修復;除此之外,染色體三度空間結構會更進一步地影響一些生理功能,例如細胞發育和分化,免疫反應和疾病產生。舉例來說,在紅血球分化過程中α-globin的轉錄會受到染色體空間結構的調控。
在早期研究染色體結構時最困難的是技術上的問題,並沒有一個很理想的方法來觀察染色體的空間結構。在2002年,Dekker等人建立了專門用來研究DNA結構的技術,叫做chromosome conformation capture (3C);此方法的確改善了過去技術上的缺點,因此近年來對DNA結構的了解也愈來愈清楚。但是3C的缺點就是必須對目標基因的順式作用因子等等很了解才比較適合拿來做探討,因此在2006年將3C更進一步修改成4C,叫做circular chromosome conformation capture。此方法的優點就是能利用某一段DNA來找出許多未知的互動區域,染色體內和染色體間的互動結構都可以偵測到。 我的論文主要想研究在TPA刺激後的K562細胞中,染色體結構的互動情形。選擇在巨核細胞分化過程中會表現增加的ITGA2B當研究對象,利用4C技術偵測和此基因的啟動子有互動的區域。我們總共找到了11個染色體間的互動區域,其中8個位在基因內,剩下的3個位於兩基因間。ITGA2B和KSR2間的互動僅在TPA刺激後的K562才可以被驗證,可見在巨核細胞分化過程中染色體有結構改變情形發生。利用半定量RT-PCR偵測互動基因的表現,發現KSR2和NAV2為誘發性表現,而PLEKHA5、PCSK7、DACH1、LPHN3、SFRS15和C1orf125都是持續性表現。這些結果顯示會表現的基因在細胞核內容易聚集在一起,因此推測此為一個轉錄工廠,這些基因共享著相同的轉錄因子複合物。 同時利用生物資訊方法預測位於這些互動基因上游1kb的啟動子區域的轉錄因子,發現除了LPHN3之外,其他基因都類似ITGA2B缺少了TATA box。所以此工廠如果真的存在,應是供給缺少TATA box的啟動子使用,不論是誘發性還是持續性表現的基因。雖然沒有TBP存在,但帶有其他轉錄因子 (例如SP1和ETS)可能可調控這些互動基因的表現。更進一步用生物資訊方法分析互動區域上的轉錄因子發現互動區域和ITGA2B啟動子上的轉錄因子都不一致,且位於SFRS15的互動區域還沒有任何轉錄因子存在,這些結果顯示出轉錄的動態機制,即轉錄進行時DNA會沿著不動的蛋白質複合物移動,此不動的複合物即為轉錄工廠中的轉錄因子組成的。 | zh_TW |
dc.description.abstract | The Human Genome Project was initiated by the National Institute of Health and the Department of Energy of the United States in 1990 and completed its ultimate goal of decoding the genomic sequence of humans in 2003. A complete book of life enabled us to study evolution, growth and development, and diseases in a genome-wide scale. The human genome was conventionally considered as a contiguous, linear sequence entity. In fact, DNA is folded into multilayered, high-order structures that eventually packaged into chromosomes. The spatial organization of chromatin dramatically affects the function of the genome, including DNA replication, transcription, and repair. Furthermore, physiological processes at the organismal and cellular levels, such as differentiation, development, immune response and pathogenesis, are greatly influenced by the three-dimension (3D) chromosomal structures in the nucleus. For example, the transcription of mammalian α-globin gene is determined by the unique spatial arrangement of chromatin structure during erythroid differentiation.
In the past, the analysis of 3D chromatin structures was limited by technical difficulties. Recently, a new methodology, termed chromosome conformation capture ( 3C ) has been developed to study chromosomes that are physically associated with nuclear protein complex. Such interactions require a prior knowledge of defined chromosomal regions. In order to examine physical associations in the unknown regions, a modified, high-throughput method of circular chromosome conformation capture ( 4C ) was developed to detect the intra- and interchromosomal interactions. The objective of my thesis research was to describe the structural organization of chromosomal interactions in human K562 cells during TPA-induced megakaryocytic differentiation. We adopted the 4C approach to investigate chromosomal interactions with the promoter sequence of the ITGA2B gene that is up-regulated in TPA-treated K562 cells. Altogether we identified 11 interchromosomal interactions. Eight of which were involved in the intragenic regions, whereas the remaining three were mapped to the intergenic regions. In this study, we also confirmed the interaction between ITGA2B and KSR2 only in the TPA-induced differentiation of K562 cells. By using the semi-quantitative RT-PCR assay to examine the transcripts of the ITGA2B-interacting genes, we found that the expression of both KSR2 and NAV2 was inducible after TPA treatment and that PLEKHA5, PCSK7, DACH1, LPHN3, SFRS15 and C1orf125 were constitutively expressed in K562 cells. These results suggest that actively transcribed genes are potentially clustered together in a nuclear space, as proposed to be in a transcription factory, which can be detected by 4C through the physical association with shared transcription complex. By using the bioinformatics approach, we also explored the transcription factor (TF)-binding motifs on the promoter sequences in the 1kb regions upstream of the ITGA2B-interacting genes. All but LPHN3, like ITGA2B, contain TATA-less promoters. It is likely that such a transcription factory, if indeed exists, may transcribe specifically the housekeeping and inducible genes without the TATA promoter with a transcription complex incorporating other TFs, such as SP1 and ETS. Further examination of the TF-binding motifs on the interactor sequences revealed that the potential binding sites, except SFRS15, were different from the ITGA2B promoter. These results likely reflect the dynamic nature of transcription machinery, in which during transcription the DNA sequence moves through immobilized protein complex. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:30:17Z (GMT). No. of bitstreams: 1 ntu-97-R95424018-1.pdf: 2356106 bytes, checksum: ff94d70bc71d3a874943b9198f1baafe (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 誌謝 ……………………………………………………………………Ⅰ
目錄 ……………………………………………………………………Ⅱ 表目錄 …………………………………………………………………Ⅳ 緒論附圖目錄 …………………………………………………………Ⅴ 圖目錄 …………………………………………………………………Ⅵ 中文摘要…………………………………………………………………Ⅷ 英文摘要 ………………………………………………………………Ⅹ 壹、緒論 ………………………………………………………………1 1.1染色體三度空間結構對基因體功能的影響 ………………………1 1.1.1局部性結構 ………………………………………………………1 1.1.2整體性結構 ………………………………………………………2 1.2研究DNA結構的技術 ………………………………………………4 1.2.1Chromosome conformation capture ……………………………4 1.2.2Circular chromosome conformation capture ………………5 1.3K562細胞株之巨核細胞系分化 ……………………………………6 1.4整合素-αII b ………………………………………………………7 1.5研究方向 ……………………………………………………………8 貳、實驗材料與 ………………………………………………………10 2.1 實驗材料……………………………………………………………10 2.2 實驗方法 …………………………………………………………18 參、實驗結果 …………………………………………………………25 3.1K562細胞株之巨核細胞系分化 …………………………………25 3.2用ITGA2B當目標基因建立circular chromosome conformation capture系統 …………………………………………………………25 3.3和ITGA2B啟動子有實體互動的互動區域分析 ……………………27 3.4和ITGA2B有互動的基因其mRNA表現………………………………29 3.5NAV2的轉錄子分析 …………………………………………………30 3.6和ITGA2B有互動的基因之啟動子分析 ……………………………30 3.7APOBEC3家族mRNA表現情形和各基因之啟動子轉錄因子的分析…………32 3.8互動區域的轉錄因子結合位置分析 ……………………………33 3.8.1在基因內的互動區域 …………………………………………33 3.8.2在兩基因間的互動區域 ……………………………………34 3.9驗證4C結果並比較巨核細胞分化前後結構的差別 ……………34 3.9.1確認4C結果方法一之評估……………………………………… 34 3.9.2確認4C結果方法二之評估 ………………………………………35 3.9.3觀察ITGA2B和KSR2之間的互動是否在巨核細胞分化前後有改變………………………………………………………………………36 肆、討論…………………………………………………………………37 4.14C結果和其他文獻中的結果比較 ………………………………37 4.2分析轉錄工廠的可能性 ……………………………………………38 4.3探討染色體內APOBEC3家族的基因表現和啟動子間的關係 …..……….40 4.4 互動區域和ITGA2B的4C誘餌互動作用機制之探討 …………………….40 4.5 確認實驗結果的探討 ………………………………………………...……...42 4.6 實驗結果整合 …………...…………………………………………………...43 4.7 未來展望 ……………………..………………………………………………44 參考文獻 …………………...…………………………………………….……….....45 表目錄 表一、 偵測細胞分化指標基因的PCR反應條件 ………….………………………..51 表二、偵測互動基因表現時,PCR的反應條件 ……..…………………………...52 表三、 4C技術中的PCR的反應條件 …………………………………….………..53 表四、 確認4C結果和比較分化前後結構改變的PCR反應條件 ………….……..54 表五、 用4C找到和ITGA2B的啟動子有互動的區域 ……………………………..55 表六、 用MatInspector資料庫預測各互動基因啟動子上的轉錄因子整理表 ...…56 表七、用MatInspector資料庫預測各互動區域上的轉錄因子整理表 ……………57 緒論附圖目錄 附圖一、 染色體三度空間結構 ……………………………………………………58 附圖二、 細胞核內部染色體結構對基因體功能的影響 …………………………59 附圖三、 紅血球分化過程中,染色體結構的改變對α-globin表現的影響 ……60 附圖四、 transcription factory model ………………………………………………61 附圖五、 利用Br-UTP觀察合成出的轉錄子在細胞核內的位置 …….…………62 附圖六、 chromosome conformation capture (3C)原理 ……………………………63 附圖七、 circular chromosome conformation capture (4C) 原理 ………………….64 附圖八、 Protein kinase C 活化路徑 ……………………………………………….65 附圖九、 MAPK訊息傳遞路徑圖 …………………………………………………66 圖目錄 圖一、利用NCBI比對經過定序出來的序列結果圖………………………………..67 圖二、TPA所引導的K562細胞之型態改變 ………….………………………….68 圖三、TPA對CD41、CD61、FLI1、MYC和NDR mRNA的影響 ……………69 圖四、MseⅠ和MboⅠ在ITGA2B的分佈位置 …………………………………..70 圖五、SDS和Triton X-100對MseⅠ和MboⅠ的影響 …………………………..71 圖六、MboⅠ消化效能 ……………………………………………………………..72 圖七、4C之inverse PCR ……………………………………………………………74 圖八、互動區域在各基因內的位置圖 ……………………………………………..75 圖九、互動區域在兩基因間的位置圖 ………………………………….………….76 圖十、KSR2和NAV2 之基因表現於TPA刺激的K562細胞 …………..……….77 圖十一、PLEKHA5、PCSK7、DACH1、LPHN3、SFRS15和C1orf125之基因表現於TPA刺激的K562細胞 ………………...………………………..………...…….78 圖十二、APOBEC3A、APOBEC3B和LOC728203之基因表現於TPA刺激的 K562 ………………………………………………………………………………... 79 圖十三、NAV2轉錄子分析 …………………………………………….…………..80 圖十四、用MatInspector資料庫預測各基因啟動子上的轉錄因子結合點 ……...81 圖十五、APOBEC3家族之基因表現於TPA刺激的K562 ……………………….82 圖十六、用MatInspector資料庫預測APOBEC3家族之基因啟動子上的轉錄因子結 合點 ………………………………………………………………………………….83 圖十七、用MatInspector資料庫預測基因內的互動區域其轉錄因子結合點並和ITGA2B中的4C誘餌比較 …………………………………………………………84 圖十八、用MatInspector資料庫預測基因間的互動區域其轉錄因子結合點並和ITGA2B中的4C誘餌比較 …………………………………………………………85 圖十九、驗證4C結果的兩種方法 …………………………………………………86 圖二十、確認4C結果之方法一 ……………………………………………………87 圖二十一、確認4C結果之方法二 …………………………………………………88 圖二十二、利用質體做PCR評估方法二 …………………………..……………..89 圖二十三、用位於KSR2的互動區域進行巨核細胞分化前後的結構情形 ……..90 圖二十四、進行轉錄時,DNA和蛋白質之間的互動關係 ………………………91 附錄A、互動區域的序列 …………………………………………………………..92 附錄B、互動區域在染色體的位置圖 …………………...……………………...….93 | |
dc.language.iso | zh-TW | |
dc.title | 巨核細胞分化時染色體間之互動結構 | zh_TW |
dc.title | Structural organization of chromosomal interactions during megakaryocytic differentiation | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王寧,林文昌,張淑媛 | |
dc.subject.keyword | 染色體結構,巨核細胞系分化,補取環化染色體之空間結構, | zh_TW |
dc.subject.keyword | chromosome structure,megakaryocytic differentiation,circular chromosome conformation capture, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。