Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑤明(Yau-Ming Chen)
dc.contributor.authorChi-Ting Huangen
dc.contributor.author黃祺庭zh_TW
dc.date.accessioned2021-06-13T15:30:01Z-
dc.date.available2011-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-15
dc.identifier.citation[1] Chuang, P.-Y.A., “An Improved Steady-State Model of Loop Heat Pipes Based on Experimental and Theoretical Analyses, Ph.D. Thesis, The Pennsylvania State University, USA, 2003.
[2] Maidanik, Y. F., Vershinin, S., Kholodov, V., and Dolgirev, J., “Heat Transfer Apparatus,” U.S. Patent, No. 4515209, 1985.
[3] Ku, J., “Operating Characteristics of Loop Heat Pipes,” SAE Paper No.1999-01-2007, 1999.
[4] Yan, Y. H., and Ochterbeck, J. M., “Numerical investigation of the steady-state operation of a cylindrical capillary pumped loop evapator,” Journal of Electrical Packaging Vol. 125, No. 3, pp. 257-260, 2003.
[5] Maidanik, Y. F., Fershtater, Y. G., and Solodovnik, N. N., “Loop Heat Pipes: Design, Investigation, Prospects of Use in Aerospace Technics,” SAE Paper No.941185, 1994.
[6] Dickey, J. T., and Peterson G. P., “Experimental and Analytical Investigation of a Capillary Pumped Loop,” Journal of Thermophysics and Heat Transfer, Vol. 8, No. 3, pp. 602-607, 1994.
[7] Ku, J., “Operating Characteristics of Loop Heat Pipes,” SAE Paper No.1999-01-2007, 1999.
[8] Kaya, T., and Hoang, T. T., “Mathematical Modeling of Loop Heat Pipes and Experimental Validation,” Journal of Thermophysics and Heat Transfer, Vol. 3, No. 3, pp. 314-320, 1999.
[9] Ku, J., Ottenstein, L., Roger, P., and Cheung, K., “Capillary Limit in a Loop Heat Pipe with a Single Evaporator,” SAE Paper No.2002-01-2502, 2002.
[10] Kobayashi, T., Ogushi, T., Haga, S., Ozaki, E., and Fujii, M., “Heat Transfer Performance of Flexible Looped Heat Pipe using R134a as a Working Fluid : Proposal for a Method to Predict the Maximum Heat Transfer Rate of FLHP,” Heat Transfer-Asian Research, Vol. 32, No. 4, pp. 306-318, 2003.
[11] Kim, J., and Golliher, E., “Steady State Model of a Micro Loop Heat Pipe,” 18th Annual IEEE Symposium: Semiconductor Thermal Measurement and Management, 2002.
[12] Hoang, T. T., and Ku, J., “Heat and Mass Transfer in Loop Heat Pipes”, ASME Heat Transfer Conference, 2003.
[13] Kaya, T., and Ku, J., “Thermal Operation Characteristics of a Small-Loop Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol. 17, No. 4, pp. 464-470, 2003.
[14] Chernysheva, M. A., Vershinin, S. V., and Maydanik, Yu. F., “Operating Temperature and Distribution of a Working Fluid in LHP,” International Journal of Heat and Mass Transfer, Vol. 50, No. 13-14, pp. 2704-2713, 2007.
[15] Vershinin, S. V., and Maydanik, Yu. F., “Hysteresis Phenomena in Loop Heat Pipes,” Applied Thermal Engineering, Vol. 27, No. 5-6, pp. 962-968, 2007.
[16] Bombled, Q., Renaud, J., Lybaert, V., Feldheim, P., Dupont, V., and Van Oost, S., “Experimental and Numerical Characterization of a Loop Heat Pipe for Space Applications,” 7th National Congress on Theoretical and Applied Mechanics, Belgium, 2006.
[17] Dutta, P., and Srinivasan, K., ”Thermohydraulic Modeling of Capillary Pumped Loop and Loop Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol. 21, No. 2, pp. 962-968, April-July, 2007.
[18] Udell, K. S., “Heat Transfer in Porous Media Heated from Above with Evaporation, Condensation, and Capillary Effects,” Journal of Heat Transfer, Vol. 105, No. 2, pp. 485-492, 1983.
[19] Fatt, I., and Klikoff, W. A., “Effect of Fractional Wettability on Multiphase Flow Through Porous Media,” AIME Technical Note #2043, AIME Transactions, Vol. 216, pp. 246, 1959.
[20] Leverett, M. C., “Capillary Behavior in Porous Solids,” AIME Transactions, Vol. 142, pp. 152, 1941.
[21] Fershtater, Y. G., Maydanik, Y. F., and Vershinin, S. V., ”Model of Transfer Accompanying Vaporization in the Porous of a Heat Pipe Operationg with an Inverted-Meniscus Evaporator Wick,” Heat Transfer Research, Vol. 25, No. 4, 1993.
[22] Kovalev, S. A., Solov’yev, S. L., and Ovodkov, O. A., “Theory of Boiling Heat Transfer on a Capillary Porous Surfaces,” Proceedings of the 9th International Heat Transfer Conference, Vol. 2, pp. 105-110.
[23] Vershinin, S. V., Fershtater, Y. G., and Ulaidanik, Y. F., ”Effect of Geometric Parameters of Channels on Heat Transfer during Vaporization from Finely Porous Capillary Structures,” Heat Transfer Research, Vol. 26, No. 3-8, 1995.
[24] Demidov, A. S., and Yatsenko, E. S., “Investigation of Heat and Mass Transferin the Evaporation Zone of a Heat Pipe Operating by the‘Invertedmeniscus’ Principle,” International Journal of Heat Mass Transfer, Vol. 37, No. 14, pp. 2155-2163, 1994.
[25] Cao, Y., and Faghri, A., “Analytical Solutions of Flow and Heat Transfer in a Porous Structure with Partial Heating and Evaporation on the Upper Surface,” International Journal of Heat Mass Transfer, Vol. 37, No. 10, pp. 1525-1533, 1994.
[26] Cao, Y., and Faghri, A., “Conjugate Analysis of a Flat-Plate Type Evaporator for Capillary Pumped Loops with Three-Dimensional Vapor Flow in the Groove,” International Journal of Heat Mass Transfer Vol. 37, No. 3, pp. 401-409, 1994.
[27] Wirsch, P. J., and Thomas, S. K., “Performance Characteristics of a Stainless Steel/Ammonia Loop Heat Pipe, ”Journal of Thermophysics and Heat Transfer, Vol. 10, No. 2, 1996.
[28] Huang, X. M., Liu, W., Nakayama, A., and Peng, S. W., “Modeling for Heat and Mass Transfer with Phase Change in Porous Wick of CPL evaporator,” Heat and Mass Transfer, Vol. 41, pp. 667-673, 2005.
[29] Kaya, T., and Goldak, J., “Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 3211-3220, 2006.
[30] Ren, C., and Wu, Q. S., “Heat Transfer in Loop Heat Pipes Capillary Wick: Effect Effective Thermal Conductivity,” Journal of Thermophysics and Heat Transfer, Vol. 21, No. 1, 2007.
[31] Khrustalev, D., and Faghri, A., “Heat Transfer in the Inverted Meniscus Type Evaporator at High Heat Fluxes,” International Journal of Heat and Mass Transfer, Vol. 38 No. 16, pp. 3091-3101, 1995.
[32] Carey, V. P., “Liquid–Vapor Phase-Change Phenomena,” 1st Edition, Taylor & Francis, pp. 112-120 and 150-155, 1992.
[33] Zhao, T. S., and Liao, Q., “On Capillary-Driven Flow and Phase-Change Heat Transfer in a Porous Structure Heated by a Finned Surface: Measurements and Modeling,” nternational Journal of Heat and Mass Transfer, Vol. 43 pp. 1141-1155, 1998.
[34] Liao, Q., and Zhao, T. S., “Evaporative Heat Transfer in a Capillary Structure Heated by a Groove Block,” Journal of Thermophysics and Heat Transfer, Vol. 13, No. 1, 1999.
[35] Vlassov, V. V., and Riehl, R. R., ”Modeling of a Loop Heat Pipe with Evaporator of Circumferential Vapor Grooves in Primary Wick,” SAE paper, NO. 2006-01-2173, 2006.
[36] North, M. T., Saraff, D. B., Rosenfeld, J. H., Maidanik, Y. F., and Vershinin, S., “High Heat Flux Loop Heat Pipes,” Proc. 6th European Symposium on Space Environmental Control Systems, Noordwijk, The Netherlands, pp. 371–376, 1997.
[37] Launay, S., Sartre, V., and Bonjour, J., “Parametric Analysis of Loop Heat Pipe Operation: a Literature Review,” International Journal of Thermal Sciences, Vol. 46, No. 7, pp. 621-636, 2007.
[38] Yao, T. C., “Development of Loop Heat Pipes Steady-State Model and its Application,” Master Thesis, Nation Taiwan University, ROC, 2007.
[39] http://webbook.nist.gov/chemistry/, NIST Standard Reference Database No. 69, June-2005 Release.
[40] Incropera, R. P., and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 4th Edition, John Wiley & Sons, 1996.
[41] Holman, J. P., “Heat Transfer,” 8th Edition, McGraw-Hill, New York, 2000.
[42] Wallis, G. B., “One-Dimension Two-Phase Flow,” McGraw-Hill, New York, 1969
[43] Lockhart, R. W., and Martinelli, R. C., “Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes,” Chemical Engineering Progress, Vol. 45, No. 1, pp. 39-48, 1949.
[44] Shah, M. M., “A General Correlation for Heat Transfer during Film Condensation inside Pipes,” International Journal of Heat and Mass Transfer, Vol. 22, pp.547-556, 1979.
[45] Wang, Z., “On the Steady-State Operation of Loop Heat Pipe Evaporators: Fundamentals and Modeling,” Ph.D. Thesis, Clemson University, USA, 2005.
[46] Gorring, R. L., and Churchill, S. W., “Thermal Conductivity of Heterogeneous Materials,” Chemical Engineering Progress, Vol. 57, pp.53 – 59, 1961.
[47] Kaviany M., ‘’Principles of Heat Transfer in Porous Media,” 2nd ed., Springer, New York, 1991.
[48] Kovalev, S. A., and Ovodkov, O. A., “A Study of Gas-Liquid Counterflow in Porous Media,” Experimental Thermal and Fluid Science, Vol. 5, pp.457 – 464, 1992.
[49] Faghri, A., “Heat Pipe Science and Technology,” Taylor & Francis, Washington, D.C., 1995.
[50] Webb, P. A., and Orr, C. “Analytical Methods in Fine Particle Technology,” Micromeritics Instrument Corporation, USA., 1997
[51] 黃坤祥,”粉末冶金學,”中華民國粉末冶金協會, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37491-
dc.description.abstract迴路式熱管(Loop Heat Pipe, LHP)數學模型的建立可以幫助設計以及性能上的預測。然而,早期文獻僅針對個別元件進行分析及模擬,甚至忽略考慮毛細結構的相變化熱傳,並且將毛細結構視為單一平均孔徑,這些假設會使模型的適用範圍與應用空間大幅減小。因此,本文將毛細結構的相變化熱傳以及孔徑分佈的概念皆納入考量,建立一穩態模型,能夠廣泛的預測單孔徑與雙孔徑毛細結構於迴路式熱管中,不同輸入熱量下之補償室與蒸發器壁面溫度。經實驗與預測結果比較,最大誤差不超過23%。
在模型的預測中,利用毛細結構臨界孔徑的方法,來討論毛細結構的孔徑分佈對性能的影響。分析結果顯示,孔徑分佈的不同會影響毛細結構內蒸氣累積的情況,而蒸氣薄膜的發生是影響熱傳性能的主要原因,藉由蒸氣薄膜熱阻與系統總熱阻的比值,可做為判斷毛細結構性能的指標,以及性能提升的依據。其中,單孔徑毛細結構因孔徑分佈較窄,蒸氣排除不易,產生之蒸汽薄膜的熱阻會隨輸入瓦數的增加而升高,當輸入熱量達500W時,蒸汽薄膜熱阻高達0.16℃/W,占系統總熱阻(0.26℃/W)60%。
由於雙孔徑毛細結構具有能排除蒸氣的大孔,受到蒸氣薄膜影響的程度較小,藉由模型分析大孔之數量與尺寸對系統性能的影響,可知在大孔尺寸較小、數量較多的情況下,具有較佳的熱傳性能,其中最佳之雙孔徑毛細結構,蒸氣薄膜的熱阻減少至0.002℃/W,占系統熱阻(0.1℃/W)的2%,顯示毛細結構之性能已達上限,說明利用雙孔徑毛細結構可有效降低蒸汽薄膜熱阻,提升迴路式熱管熱傳性能。
zh_TW
dc.description.abstractA mathematical model for Loop heat pipes (LHPs) can provide a straightforward method of design analysis and performance improvement. However, most of mathematical models were developed for the specific component, either for a wick or a compensation chamber. These models ignored the phase-change heat transfer or the pore size distribution of a wick structure. It will restrict the range of application and prediction of the model. An improved 1-D steady state model was developed in this study. The phase-change heat transfer and the pore size distribution of a wick structure were also taken into account. The evaporator surface temperature was calculated as a function of the heat load. Both of the monoporous wick and biporous wick can also be predicted, the comparison between the predicted results and experimental data are within 23%.
The effects of pore size distributions in the wick’s performances were studied by this model. Results of this study showed the different pore size distributions will influence the vapor blanket extent of the wicks, which can be estimated by the thermal resistance. This thermal resistance dominates the heat transfer performance of the wick and thus can be considered as a standard for the wick’s heat transfer capacity. Because the narrow pore size distribution of the monoporous wick would accumulate gradually to form the vapor blanket, it brings the higher thermal resistance with increasing heat flux. As the heat load increased to 500W, the thermal resistance of the vapor blanket would reach to 0.16℃/W, and 60% of the total thermal resistance(0.26℃/W).
The large pores in the biporous wick play the role as the path way for vapor to escape, and thus the performance is affected less by the vapor blanket. The size and amount of larger pores in the biporous wicks was analyzed to investigate the heat transfer capacity of the LHP by this model. The Results indicate that the large pores with reducing size and increasing amount have better performance. The optimized biporous wick can obviously reduce the thermal resistance of vapor blanket to 0.002℃/W, only 2% of the total thermal resistance(0.1℃/W), on the other hand, the biporous wick can not only effectively eliminate the thermal resistance of vapor blanket but also improve the heat transfer capacity of the LHP.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:30:01Z (GMT). No. of bitstreams: 1
ntu-97-R95522312-1.pdf: 4689550 bytes, checksum: 2aaefc74c4e25cb43c160142f9da86d4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 ii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xii
表目錄 xiv
符號說明 xvi
第一章 緒論 1
1.1前言 1
1.2文獻回顧 5
1.2.1系統操作溫度預測模型 5
1.2.2毛細結構熱傳模型 6
1.3研究目的 12
第二章 迴路式熱管基本原理 13
2.1迴路式熱管的基本描述 13
2.2系統操作原理 13
2.2-1毛細限制 14
2.2-2啟動限制 15
2.2-3液體過冷限制 16
2.2-4補償室體積限制 16
2.3迴路式熱管系統之熱阻 17

第三章 穩態模型 21
3.1數學模型的假設 21
3.2能量流動分析 22
3.3流動壓降分析 23
3.4輸入及輸出參數 25
3.5模型計算流程 25
3.5-1工作流體性質 28
3.5-2系統管路單相壓降與熱傳之計算 28
3.5-3系統管路二相壓降之計算 30
3.5-4系統管路二相熱傳之計算 32
3.5-5毛細結構壓降與熱傳 34
3.6蒸發器至補償室間之熱傳 34
3.6-1熱洩漏量之計算 34
3.6-2過冷液回流熱量的計算 36
3.6-3補償室與環境之熱交換 37
第四章 毛細結構相變化熱傳模型 39
4.1毛細結構模型概要說明及假設 39
4.2模型計算流程 40
4.3數學模型之統御方程式 42
4.4相對滲透度及毛細壓力之關係 43
4.4-1毛細結構孔徑與二相流動之關係 43
4.4-2孔徑分佈曲線與相對滲透度之關係 44
4.4-3能量與動量方程式之結合條件 46
4.4-4具蒸汽薄膜之狀態 47
4.5模型流程圖 49
第五章 實驗流程與原理 51
5.1迴路式熱管熱傳性能的量測 51
5.2毛細結構參數量測 52
5.2-1滲透度 52
5.2-2孔隙度及孔徑分佈 52
5.3誤差分析 56
5.4實驗參數 56
第六章 結果與討論 57
6.1穩態模型預測結果 57
6.2預測結果之分析 60
6.3穩態模型的應用與參數探討 62
6.3-1蒸汽薄膜發生原因 63
6.3-2降低蒸汽薄膜影響方法之討論 65
6.4性能測試 76
第七章 結論與建議 78
7.1結論 78
7.2建議 80
參考文獻 82
附錄 88
dc.language.isozh-TW
dc.subject迴路式熱管zh_TW
dc.subject孔徑分佈曲線zh_TW
dc.subject單孔徑毛細結構zh_TW
dc.subject雙孔徑毛細結構zh_TW
dc.subject相變化熱傳zh_TW
dc.subjectbiporous wicken
dc.subjectmonoporous wicken
dc.subjectpore size distributionen
dc.subjectLoop heat pipeen
dc.subjectphase-change heat transferen
dc.title具毛細結構相變化熱傳效應之迴路式熱管數學模型zh_TW
dc.titleMathematical Model of a Loop Heat Pipe with Phase-Change Heat Transfer in a Wick Structureen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周賢福,王興華,傅武雄,鄭慶陽
dc.subject.keyword迴路式熱管,孔徑分佈曲線,單孔徑毛細結構,雙孔徑毛細結構,相變化熱傳,zh_TW
dc.subject.keywordLoop heat pipe,pore size distribution,monoporous wick,biporous wick,phase-change heat transfer,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2008-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved