Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑媛(Sui-Yuan Chang)
dc.contributor.authorTai-Ling Chaoen
dc.contributor.author趙苔伶zh_TW
dc.date.accessioned2021-06-13T15:29:45Z-
dc.date.available2016-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-08-11
dc.identifier.citation1. Peter Palese, M.L.S., Orthomyxoviridae: the viruses and their replication. 5th ed, ed. D.M.K. Peter M Howley. Vol. 2. 2007: Lippincott Williams & Wilkins. 1647-1689.
2. Horisberger, M.A., The large P proteins of influenza A viruses are composed of one acidic and two basic polypeptides. Virology, 1980. 107(1): p. 302-5.
3. Detjen, B.M., et al., The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex. J Virol, 1987. 61(1): p. 16-22.
4. Honda, A., et al., Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem, 1990. 107(4): p. 624-8.
5. O'Neill, R.E., J. Talon, and P. Palese, The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J, 1998. 17(1): p. 288-96.
6. Fujiyoshi, Y., et al., Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO J, 1994. 13(2): p. 318-26.
7. Chu, C.M., I.M. Dawson, and W.J. Elford, Filamentous forms associated with newly isolated influenza virus. Lancet, 1949. 1(6554): p. 602.
8. Kilbourne, E.D. and J.S. Murphy, Genetic studies of influenza viruses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates by combination with PR8. J Exp Med, 1960. 111: p. 387-406.
9. Huang, Q., et al., Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. Biochim Biophys Acta, 2003. 1614(1): p. 3-13.
10. Schroeder, C., et al., The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J, 2005. 34(1): p. 52-66.
11. Apostolov, K. and T.H. Flewett, Further observations on the structure of influenza viruses A and C. J Gen Virol, 1969. 4(3): p. 365-70.
12. Hsu, M.T., et al., Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A, 1987. 84(22): p. 8140-4.
13. Hirst, G.K., Adsorption of Influenza Hemagglutinins and Virus by Red Blood Cells. J Exp Med, 1942. 76(2): p. 195-209.
14. Ito, T., et al., Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol, 1997. 71(4): p. 3357-62.
15. Ito, T., et al., Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol, 2000. 74(19): p. 9300-5.
16. Essentials of Glycobiology, ed. R.C. Ajit Varki, Jeffrey Esko, Hudson Freeze, Gerald Hart, and Jamey Marth. 1999, New York: Cold Spring Harbor Laboratory.
17. Shinya, K., et al., Avian flu: influenza virus receptors in the human airway. Nature, 2006. 440(7083): p. 435-6.
18. Ibricevic, A., et al., Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol, 2006. 80(15): p. 7469-80.
19. Creuzot-Garcher, C., et al., Alteration of sialyl Lewis epitope expression in pterygium. Invest Ophthalmol Vis Sci, 1999. 40(8): p. 1631-6.
20. Terraciano, A.J., et al., Sialyl Lewis X, Lewis X, and N-acetyllactosamine expression on normal and glaucomatous eyes. Curr Eye Res, 1999. 18(2): p. 73-8.
21. Matlin, K.S., et al., Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol, 1981. 91(3 Pt 1): p. 601-13.
22. Patterson, S., J.S. Oxford, and R.R. Dourmashkin, Studies on the mechanism of influenza virus entry into cells. J Gen Virol, 1979. 43(1): p. 223-9.
23. Rust, M.J., et al., Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol, 2004. 11(6): p. 567-73.
24. Lombardi, D., et al., Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J, 1993. 12(2): p. 677-82.
25. Mukaigawa, J. and D.P. Nayak, Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol, 1991. 65(1): p. 245-53.
26. Nath, S.T. and D.P. Nayak, Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol Cell Biol, 1990. 10(8): p. 4139-45.
27. Fodor, E. and M. Smith, The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol, 2004. 78(17): p. 9144-53.
28. Ye, Z., D. Robinson, and R.R. Wagner, Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol, 1995. 69(3): p. 1964-70.
29. Neumann, G., M.T. Hughes, and Y. Kawaoka, Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J, 2000. 19(24): p. 6751-8.
30. Paul Digard, L.T., and Debra Elton, Orthomyxovirus Genome Transcription and Replication. Viral Genome Replication, ed. M.G. Craig E. Cameron, Kevin D. Raney. 2009: Springer 163-180.
31. Baudin, F., et al., In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology, 2001. 281(1): p. 102-8.
32. Akarsu, H., et al., Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J, 2003. 22(18): p. 4646-55.
33. Scheiffele, P., et al., Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem, 1999. 274(4): p. 2038-44.
34. Chen, B.J., et al., Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol, 2007. 81(13): p. 7111-23.
35. Prevention, C.f.D.C.a., 2009 H1N1 flu: international situation update. , C.f.D.C.a. Prevention, Editor. 2010: Atlanta, GA.
36. Francis, T., Jr., Transmission of Influenza by a Filterable Virus. Science, 1934. 80(2081): p. 457-9.
37. Taubenberger, J.K., et al., Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos Trans R Soc Lond B Biol Sci, 2001. 356(1416): p. 1829-39.
38. Kobasa, D., et al., Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature, 2007. 445(7125): p. 319-23.
39. Xu, T., et al., Acute respiratory distress syndrome induced by avian influenza A (H5N1) virus in mice. Am J Respir Crit Care Med, 2006. 174(9): p. 1011-7.
40. Tumpey, T.M., et al., Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 2005. 310(5745): p. 77-80.
41. Sell, S., Stem cells. Stem Cell Handbook ed. by Sell, S. 2004. 1-18.
42. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
43. Lantz, C.S. and T.F. Huff, Differential responsiveness of purified mouse c-kit+ mast cells and their progenitors to IL-3 and stem cell factor. J Immunol, 1995. 155(8): p. 4024-9.
44. Stephen Sullivan, C.A.C., Kevin Eggan, Human Embryonic Stem Cells. 2007.
45. Kellner, S. and N. Kikyo, Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histol Histopathol. 25(3): p. 405-12.
46. Xiaoming Liu, R.R.D., and John F. Engelhardt, Stem Cells in the Adult Lung. Essential Stem Cell Methods, ed. I.K. Robert Lanza. 2009: Academic Press. 113-147.
47. Ling, T.Y., et al., Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A, 2006. 103(25): p. 9530-5.
48. Chen, Y., et al., A novel subset of putative stem/progenitor CD34+Oct-4+ cells is the major target for SARS coronavirus in human lung. J Exp Med, 2007. 204(11): p. 2529-36.
49. Khatri, M., et al., Isolation and characterization of chicken lung mesenchymal stromal cells and their susceptibility to avian influenza virus. Dev Comp Immunol, 2009. 34(4): p. 474-9.
50. Nakajima, N., et al., The first autopsy case of pandemic influenza (A/H1N1pdm) virus infection in Japan: detection of a high copy number of the virus in type II alveolar epithelial cells by pathological and virological examination. Jpn J Infect Dis, 2010. 63(1): p. 67-71.
51. Kawakami, E., et al., Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods, 2011. 173(1): p. 1-6.
52. Lakadamyali, M., M.J. Rust, and X. Zhuang, Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell, 2006. 124(5): p. 997-1009.
53. Eierhoff, T., et al., The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathog, 2010. 6(9).
54. Kalina, M., R.J. Mason, and J.M. Shannon, Surfactant protein C is expressed in alveolar type II cells but not in Clara cells of rat lung. Am J Respir Cell Mol Biol, 1992. 6(6): p. 594-600.
55. Voorhout, W.F., et al., Immunocytochemical localization of surfactant protein D (SP-D) in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem, 1992. 40(10): p. 1589-97.
56. Wang, C.C., et al., Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A, 2009. 106(43): p. 18137-42.
57. Vigerust, D.J., et al., N-linked glycosylation attenuates H3N2 influenza viruses. J Virol, 2007. 81(16): p. 8593-600.
58. Wilson, I.A., J.J. Skehel, and D.C. Wiley, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature, 1981. 289(5796): p. 366-73.
59. Tate, M.D., A.G. Brooks, and P.C. Reading, Receptor specificity of the influenza virus hemagglutinin modulates sensitivity to soluble collectins of the innate immune system and virulence in mice. Virology. 413(1): p. 128-38.
60. Kase, T., et al., Human mannan-binding lectin inhibits the infection of influenza A virus without complement. Immunology, 1999. 97(3): p. 385-92.
61. Job, E.R., et al., Pandemic H1N1 influenza A viruses are resistant to the antiviral activities of innate immune proteins of the collectin and pentraxin superfamilies. J Immunol, 2010. 185(7): p. 4284-91.
62. Song, L., et al., Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol, 2010. 84(17): p. 8849-60.
63. Karlas, A., et al., Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 2010. 463(7282): p. 818-22.
64. Itoh, Y., et al., In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature, 2009. 460(7258): p. 1021-5.
65. Neumann, G., T. Noda, and Y. Kawaoka, Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009. 459(7249): p. 931-9.
66. Sieczkarski, S.B. and G.R. Whittaker, Characterization of the host cell entry of filamentous influenza virus. Arch Virol, 2005. 150(9): p. 1783-96.
67. Shaw, M.L., et al., Cellular proteins in influenza virus particles. PLoS Pathog, 2008. 4(6): p. e1000085.
68. LeBouder, F., et al., Annexin II incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin. J Virol, 2008. 82(14): p. 6820-8.
69. LeBouder, F., et al., Plasminogen promotes influenza A virus replication through an annexin 2-dependent pathway in the absence of neuraminidase. J Gen Virol, 2010. 91(Pt 11): p. 2753-61.
70. Lazarowitz, S.G., A.R. Goldberg, and P.W. Choppin, Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology, 1973. 56(1): p. 172-80.
71. Bloom, J.D., L.I. Gong, and D. Baltimore, Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science, 2010. 328(5983): p. 1272-5.
72. Martina, B.E., et al., A recombinant influenza A virus expressing domain III of West Nile virus induces protective immune responses against influenza and West Nile virus. Plos One, 2011. 6(4): p. e18995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37484-
dc.description.abstract流感病毒藉由飛沫傳播,常引發急性且嚴重的呼吸道與肺部疾病,其中A型流感病毒曾引發多起世界性大流行造成上千萬人死亡,但仍不明瞭造成病人肺衰竭至死之原因。之前研究發現於肺部中存在一群帶有幹細胞標幟、表現Clara cell secretary protein (CCSP)且能分化成第一型或是第二型肺泡細胞的幹細胞,並發現此細胞可能是SARS-CoV感染人體的目標細胞,當此細胞受到感染後會失去原先修復肺組織的能力,進而造成肺組織嚴重損毀失去呼吸功能。而實驗室之前的研究發現A型流感病毒可感染幹細胞並造成細胞病變死亡,但不清楚其感染特性,因此本篇論文想要探究A型流感病毒感染幹細胞所具有的特性。
實驗首先利用實驗室病毒株PR8感染小鼠肺部幹細胞且觀察其於幹細胞中的生長趨勢,同時利用螢光染色發現幹細胞可表現α2,3及α2,6兩種唾液酸。接著為了探究病毒感染小鼠肺部幹細胞所表現的特色,以一般細胞株MDCK做為對照組,進行生長趨勢比較、病毒結合唾液酸試驗、病毒進入細胞試驗、病毒於細胞中的核酸複製能力以及比較新生成的病毒,發現MDCK細胞株生成的病毒量較高,而且在病毒結合唾液酸試驗及病毒進入細胞試驗上,病毒結合與進入幹細胞的量皆少於MDCK細胞株。在分析核酸複製能力之實驗中觀察到病毒NP基因的vRNA於幹細胞中生成速率較低。以蔗糖梯度超高速離心分析來自不同細胞新生成的病毒,發現來自幹細胞的病毒密度小於來自MDCK細胞株且以蛋白質電泳分析病毒組成,發現來自不同細胞的病毒其神經胺酸酶分子量大小不同。以帶有抗藥性重組病毒株感染幹細胞發現病毒生長趨勢不受抗藥性基因影響且具高度抗藥性。最後以H1N1臨床病毒株、新流感病毒株與H3N2臨床病毒株感染小鼠肺部幹細胞,但相較於實驗室病毒株PR8,臨床病毒株與新流感病毒株都無法有效的感染小鼠肺部幹細胞。
本論文研究當A型流感病毒感染小鼠肺部幹細胞時,僅有實驗室病毒株PR8可有效感染幹細胞,臨床病毒株與新流感病毒株則不易感染幹細胞。同時肺部幹細胞所製造的病毒量低於一般細胞株MDCK,其原因可能是病毒與唾液酸結合力、進入細胞能力及核酸複製能力皆較弱。此外,幹細胞可製造出密度較低的病毒顆粒,且當抗藥性病毒感染幹細胞時,生長趨勢未受影響且仍具有其抗藥性。
zh_TW
dc.description.abstractInfluenza viruses spread by droplets, often causing acute and severe respiratory and lung diseases, including influenza A virus most often caused by a worldwide pandemic. Found in previous studies one stem cells with stem cell markers Oct-4+, expressed clara cell secretory protein (CCSP) and differentiated into type I or type II alveolar cells, and also found that stem cells could be infected with SARS-CoV as human target cells. SARS-CoV infected cells lose the ability to repair the injury tissue, thus causing serious damage to lung tissue. In our laboratory previous study, found that influenza viruses can infect stem cells and cause cytopathic effect. But the characteristics of virus infection in stem cells are still not clear. The purpose of the research is exploring the influenza virus infected stem cells with such characteristics.
First experiment use laboratory strain PR8 to infect mouse pulmonary stem/progenitor cells, then observe viral growth curve in cells. Then, we found that stem cells express both two kinds sialic acid, α2,3-linkage and α2,6-linkage, by using immunefluorescence assay. Second, in order to explore the performance characteristics of virus when infected stem cells, we tested viral growth trend, viral binding and entry abilities and viral genome replication efficiency in stem cell and control group MDCK cells, found that two types of cells infected with the same dose, MDCK cell lines available to reach higher viral load. In viral binding and entry assay, compare to MDCK cells, stem cells have less virus binding and entry. In viral genome replication assay, we observed that vRNA synthesis of viral NP gene was much slower in stem cells than MDCK cells. Third, using sucrose gradient ultra- centrifugation analyzes viral characteristics from different cells, and got the result of virus from stem cell has lower density and the molecular weight of its neuraminidase is also smaller. Then, to explore whether virus with resistance mutations resistant to Tamiflu or not, we made recombinant virus with drug-resistant NA gene and infected cells. In this experiment, we found resistance virus can grow as well as wild type virus, also can resist to Tamiflu in stem cells. Finally, stem cells can not be strongly infected by using two H1N1 clinical strains, one pandemic H1N1 strain and one H3N2 clinical strain.
This research found the possible reasons of why less viruses be made in mouse pulmonary stem/progenitor cells: lower binding and entry ability to stem cells and lower viral RNA replication efficiency. And also found virus particle from stem cells has lower density and smaller neuraminidase to MDCK cell lines. Finally, resistance NA gene not only did not disturb virus growth but also gave the ability to resist Tamiflu in stem cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:29:45Z (GMT). No. of bitstreams: 1
ntu-100-R98424016-1.pdf: 932872 bytes, checksum: 66eac67b30e7cf5308d24a2307dc3539 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents圖目錄 IV
表目錄 V
致謝 VI
摘要 VII
英文摘要 IX
第一章 前言 1
1-1 流行感冒病毒 1
1-1-1 病毒構型簡介 1
1-1-2 病毒感染模式 2
1-1-3 重要之世界性大流行 5
1-1-4 流感病毒與肺部疾病的關係 6
1-2 幹細胞介紹 7
1-2-1 幹細胞簡介 7
1-2-2 肺部幹細胞種類與介紹 8
1-2-3 小鼠肺部幹細胞介紹 9
1-3 病毒感染肺部幹細胞 10
1-3-1 SARS-CoV感染小鼠肺部幹細胞 10
1-3-2 流感病毒感染其他物種之肺部幹細胞 10
第二章 實驗動機與目的 12
2-1 實驗室前期研究 12
2-2 實驗假說與目的 12
第三章 實驗方法與材料 13
3-1 實驗材料 13
3-1-1 細胞 13
3-1-2 流感病毒株 13
3-1-3 培養基與試劑 13
3-1-4 抗體 15
3-1-5 商業試劑套組 15
3-1-6 質體 15
3-1-7 引子與探針 16
3-1-8 藥物 17
3-2 實驗方法 17
3-2-1 MDCK細胞株培養 17
3-2-2 流感病毒培養 17
3-3-3 流感病毒感染小鼠肺部幹細胞 18
3-3-4 流感病毒溶菌斑試驗 18
3-3-5 細胞免疫螢光染色 18
3-3-6 病毒RNA萃取 19
3-3-7即時定量聚合酶鏈鎖反應 19
3-3-8 病毒結合細胞試驗 21
3-3-9 病毒進入細胞試驗 21
3-3-10 病毒RNA反轉錄反應 21
3-3-11 HA與NA之聚合酶鏈鎖反應 22
3-3-12以轉染實驗製造流感病毒 23
3-3-13 蔗糖梯度超高速離心分層 23
3-3-14 蛋白質電泳 24
3-3-15 西方墨點轉置法 24
3-3-16 Coomasie Blue蛋白質染色法 24
3-3-16 流感病毒藥物活性測試 25
3-3-17 統計方法與分析軟體 25
第四章 實驗結果 26
4-1 實驗室病毒株PR8感染小鼠肺部幹細胞之生長趨勢 26
4-2 探討病毒感染小鼠肺部幹細胞的特性 26
4-2-1 觀察小鼠肺部幹細胞上唾液酸表現 26
4-2-2 探討病毒結合與進入幹細胞的能力 27
4-2-3 探討病毒於細胞中複製之能力 28
4-2-4 觀察病毒顆粒之特性 29
4-3 以具抗藥性之重組病毒株感染細胞 30
4-3-1 抗藥性病毒株可於幹細胞中複製 30
4-3-2 幹細胞生成之病毒仍保留其抗藥性 30
4-4 以臨床株感染小鼠肺部幹細胞 31
4-4-1西元2008年台大醫院H1N1臨床病毒株 31
4-4-2西元2009年新流感H1N1病毒株 31
4-4-3西元2007年台大醫院H3N2臨床病毒株 32
第五章 實驗討論 33
第六章 參考文獻 40
dc.language.isozh-TW
dc.subject小鼠肺部幹細胞zh_TW
dc.subjectA型流感病毒zh_TW
dc.subjectMouse pulmonary stem/progenitor cellsen
dc.subjectInfluenza A virusen
dc.title探討A型流感病毒感染小鼠肺部幹細胞之特性zh_TW
dc.titleCharacterization of Influenza A virus Infection in Mouse
Pulmonary Stem/Progenitor Cells
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰元(Thai-Yen Ling),李君男(Chun-nan Lee),高全良(Chuan-Liang Kao),施信如(Shin-Ru Shih)
dc.subject.keywordA型流感病毒,小鼠肺部幹細胞,zh_TW
dc.subject.keywordInfluenza A virus,Mouse pulmonary stem/progenitor cells,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2011-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
911.01 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved