Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37469
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳錫侃
dc.contributor.authorMing-Chuan Chenen
dc.contributor.author陳明傳zh_TW
dc.date.accessioned2021-06-13T15:29:14Z-
dc.date.available2011-07-21
dc.date.copyright2008-07-21
dc.date.issued2008
dc.date.submitted2008-07-16
dc.identifier.citation1.L.C. Chang and T.A. Read, Trans. AIME., 189
(1951) 47.
2.T. Tadaki, K. Otsuka and K. Shimizu, Ann. Rev.
Mater. Sci., 18 (1988) 25.
3.H. Kessler and W. Pitsch, Acta Met., 15 (1967)
401.
4.T. Saburi, S. Nenno and C.M. Wayman, ICOMAT-79
(1979) 619.
5.M. Nishida and T. Honma, Scripta Metall., 18
(1984) 1293.
6.M. Nishida and T. Honma, Scripta Metall., 18
(1984) 1299.
7.M. Nishida and C.M. Wayman, Scripta Metall., 18
(1984) 1389.
8.K. Otsuka and K. Shimizu, Int’l. Met. Rev., 31
(1986) 93.
9.M. Nishida and T. Honma, ICOMAT-82, J. de
physique (Supp.), 43 (1982) C4-225.
10.T. Honma, Proc. Int’l Symp. on Shape Memory
Alloys, SMA 86 Guilin, China, 1986, pp.83.
11.T. Honma, ICOMAT-86 (1986) 709.
12.K. Otsuka and K. Shimizu, Metals Forum, 4 (1981)
142.
13.K. Otsuka and C.M. Wayman, in: Reviews on the
Deformation Behavior of Materials, (P. Feltham
ed.), Israel, 1977, pp.81.
14.K. Otsuka, in: Proc. Int’l Conf. on Solid to
Solid Phase Transformations, TMS-AIME Pittsburgh
PA., USA, 1981, pp.1267.
15.K. Otsuka and X. Ren, Intermetallics, 7 (1999)
511.
16.TB Massalski, H. Okamoto, P.R. Subramanian and L.
Kacprzak, Editors, Binary Alloy Phase Diagrams,
2nd ed., Vol. 3. Ohio, ASM International, 1990,
pp.2875.
17.C. M. Jackson, H. J. Wagner and R. J. Wasilewski,
NASA-SP 5110, 1972.
18.K. Ostuka, S. Sawamura and K. Shimizu, Phys.
Stat. Sol., 5 (1971) 457.
19.O. Matsumoto, S. Miyazaki, K. Ostuka and H.
Tamura, Acta Mater., 35 (1987) 2137.
20.K.M. Knowls and K.A. Smith, Acta Mater., 29
(1981) 101.
21.D.P. Dautovich and G.R. Purdy, Can. Metall., 6
(1972) 115.
22.D. Bradley, J. Acoust. Soc. Am., 37 (1965) 700.
23.C.M. Wayman and I. Cornelis, Scripta Metall., 6 (1972)
115.
24.H.C. Ling and R. Kaplow, Met. Trans. A, 11 (1980) 77.
25.D.P. Dautovich and G.R. Purdy, Can. Metal. Quart. 4
(1965) 129.
26.F.E. Wang, B.F. Desavage and W.I. Buehler, J. Appl.
Phys., 39 (1968) 2166.
27.G.D. Sandrock, A.J. Perkin and R.F. Hehemann, Met.
Trans., 2 (1971) 2769.
28.O. Mercier, K.N. Melten and Y. de Preville Acta Met.,
27 (1979) 1467.
29.H.A. Mohamed and J. Washburn, Met. Trans. A, 7 (1976)
1041.
30.H.C. Ling and R. Kaplow, Met. Trans. A, 12 (1981) 2101.
31.E. Goo and R. Sinclair, Acta Met., 33 (1985) 1717.
32.S.K. Wu and H.C. Lin, Scripta Met., 25 (1991) 1529.
33.C.M. Hwang, M. Meichle, M.B. Salamon and C.M. Wayman,
Phil. Mag. A, 47 (1983) 31.
34.K.H. Eckelmeyer, Scripta Mater., 10 (1076) 677.
35.J.E. Hanlon, S.R. Butler and R.J. Wasilewski, Trans.
Metall. Soc. AIME, 239 (1967) 1323.
36.T. Saburi, T. Tatsumi and S. Nenno, J. de Physique
(Supp.), 43 (1982) C4-261.
37.T. Tadaki, Y. Nakata and K. Shimizu, Trans. JIM., 28
(1987) 883.
38.S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34 (1986)
275.
39.M. Nishida and C.M. Wayman, Metallography, 21(1988) 275.
40.G. Airoldi, G. Bellini and C.D. Franceso, J. Phys. F,
14 (1984) 1983.
41.H.C. Lin, S.K. Wu, T.S. Chou and H.P. Kuo, Acta Metall.
Mater., 39 (1991) 2069.
42.T. Saburi, Shape Memory Materials, Edited by K. Otsuka
and C.M. Wayman, Cambridge University Press, 1998, p.58.
43.C.M. Wayman, Proc. ICOMAT-89 (1989) 519.
44.黃兵民,哈爾濱工業大學博士論文,1997.
45.C.S. Zhang, Y.Q. Wang, J.X. Cheng, L.C.Zhao, Proc.
First Int’l Conf. on Shape Memory and Superelastic
Technologies, California, 1994, p.383.
46.黃兵民,蔡傳,趙連城,宇航材料工藝,27(5) (1997) 24.
47.T. Saburi and S. Nenno, Proc. Int’l. Conf. on Solid to
Solid Phase Transformations, Pittsburgh, 1981, 1455.
48.T. Saburi, M. Yoshida and S. Nenno, Scripta Metall., 18
(1984) 363.
49.S. Miyazaki, S. Kimura, K. Otsuka and Y. Suzuki,
Scripta Metall., 18 (1984) 833.
50.T. Saburi, Proc. MRS Int’l Mtg. on Adv. Mater., Tokyo,
Vol. 9 (Shape Memory Mater.), 1989, p.77.
51.T. Tadaki and C.M. Wayman, Scripta Metall., 14 (1980)
911.
52.Y.F. Zheng, B. M Huang, J. X. Zhang and L.C. Zhao,
Mater. Sci. Eng. A, 279 (2000) 25.
53.W.F. Ganong (胡慕美譯),生理學,合記圖書出版社,1991,
p.539.
54.B. D. Ranter, A. B. Jonston and T. J. Lenk, Biomedical
Materials Research, 21 (1987) 59.
55.N. Shevchenko, M.T. Pham, M.F. Maitz, Applied Surface
Science, 235 (2004) 126-131.
56.J.C. Wataha, N.L. O’Dell, B.B. Singh, M. Ghazi, G.M.
Whitford, P.E. Lockwood, J. Biomed. Mater. Res., 58
(2001) 537.
57.J. Y. Wang, B. H. Wicklund, R. B. Gustilo and D. T.
Tsukayama, Biomaterials, 17 (1996) 2233.
58.W. Petty, Total Joint Repalcement, W. B. Saunders,
1991,Chap. 6, p.51.
59.T. Hanawa, Mater. Sci. Eng. A, 267 (1999) 260.
60.R. G. Tang, K. R. Dai and Y.Q. Chen, Biomed. Mater.
Eng., 6 (1996) 307.
61.K. Dai and Y. Chu. Biomed. Mater. Eng., 6 (1996) 233.
62.P. J. Yang, Y. F. Zhang, M. Z. Ge, T.D. Cai, J.C. Tao
and H. P. Yang, Chin. Med. J (Eng.), 100 (1987) 712.
63.K. R. Dai, X. K. Hou, Y. H. Sun, R. G. Tang, S. J. Qiu
and C. Ni, Injury, 24 (1993) 651.
64.V. Brailovski and F. Trochu, Biomed. Mater. Eng., 6
(1996) 291.
65.P. P. Kuo, P. J. Yang, Y.F. Zhang, H. B. Yang, Y.F. Yu,
K. R. Dai, W. Q. Hong, M. Z. Ke, T. D. Cai and J. C.
Tao, Orthopedics, 12 (1989) 111.
66.J. O. Sanders, A. E. Sanders, R. More and R. B. Ashman,
Spine, 18 (1993) 1640.
67.J. Musialek, P. Filip and J. Nieslanik, Arch Orthop
Trauma Surg., 117 (1998) 341.
68.W. Xu, T.G. Frank, G. Stockham and A. Cuschieri, Ann
Biomed. Eng., 27 (1999) 663.
69.H. Gerber and S. M. Perren, In: G. D. Winter, J. L.
Leray and K. de Groot, Editors, Evaluation of
Biomaterials, Wiley, New York, Vol.14, 1980, p.307.
70.C.C. Shih, S.J. Lin, Y.L. Chen, Y.Y. Su, S.T. Lai, G.J.
Wu, C.F. Kwok, K.H. Chung, J. Biomed. Mater. Res., 52
(2000) 395.
71.M. Assad, A.V. Chernyshow, P. jarzem, M.A. Leroux, C.
Coillard, S. Charette, C.H. Rivard, J. Biomed. Mater.
Res., 64 (2003) 121.
72.C. Heintz, G. Riepe, L. Birken, E. Kaiser, N. Chakfe,
M. Morlock, G. Delling, H. Imig, J. Endovasc. Ther., 8
(2001) 248.
73.A. Michiardi, C. Aparicio, J.A. Planell, F.J. Gil, J.
Biomed. Mater. Res. B, 77 (2006) 249-256.
74.M.H. Wong, F.T. Cheng, H.C. Man, Materials Letters, 61
(2007) 3391-3394.
75.G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J.
Van Humbeeck, Biomaterials, 23 (2002) 4863-4871.
76.楊木榮,台灣大學材料科學與工程學研究所博士論文,1999.
77.陳芊卉,台灣大學材料科學與工程學研究所碩士論文,2006.
78.K. N. Melton and O. Mercier, Scripta Met., 12 (1987) 5.
79.K. N. Melton and O. Mercier, Met. Trans., 9A (1987)
1487.
80.O. Mercier and K. N. Melton, Met. Trans., 10A (1979)
387.
81.R. H. Bricknell, K. N. Melton and O. Mercier, Met.
Trans., 10A (1979) 693.
82.O. Mercier, E. Torok and B. Tirbonod, ICOMAT-79, P.702.
83.R. H. Bricknell and K. N. Melton, Met. Trans., 11A
(1980) 1541.
84.T. Tadaki and C.M. Wayman, Metallography, 15 (1982) 233.
85.T. Tadaki and C.M. Wayman, Metallography, 15 (1982) 247.
86.T. Saburi, T. Komatsu, S. Nenno and Y. Watanabe, J.
Less. Common Metals, 118 (1986) 217.
87.Y. Shugo and T. Honma, Bull. Res. Inst. Miner. Dress.
Met., 43 (1987) 117.
88.S. Miyazaki, I. Shiota, K. Otsuka and H. Tamura, Proc.
MRS Int. Mett. On Adv. Mater. Shape Memory Materials,
(1988) P.153.
89.T. Saburi, T. Takagaki, S. Nenoo and K. Koshino, ibid
(1988) P.147.
90.T. Sabure, T. Watanabe and S. Nenno, ISIJ
International, 29 (1989) 405.
91.T. H. Nam, T. Saburi, Y. Kawamura and K. Shimizu, Mat.
Trans. JIM, 31 (1990) 262.
92.T. H. Nam, T. Saburi and K. Shimizu, Mat. Trans. JIM,
31 (1990) 959.
93.T. H. Nam, T. Saburi, Y. Nakata and K. Shimizu, Mat.
Trans. JIM, 31 (1990) 1050.
94.T. H. Nam, T. Saburi and K. Shimizu, Mat. Trans. JIM,
33 (1991) 814.
95.B. S. Murty, S. Ranganathan and M. Mohan Rao, Mat. Sci.
Eng., 149A (1992) 231.
96.Y. Furuya, M. Matsumoto, H. Kimura, K. Aoki and T.
Masumoto, Mat. Trans. JIM, 31 (1990) 504.
97.L. Chang and D. S. Grummon, Scripta Met., 25 (1991)
2079.
98. W. J. Moberly, J. L. Proft, T. W. Duerig and R.
Sinclair, Mater. Sci. Forum, 56 (1990) 605.
99.Y. Watanable, T. Saburi, Y. Nakagawa and S. Nenno, J.
JIM, 54 (1990) 861.
100.T. Zhang, A. Inoue and T. Masumoto, Mat. Sci. Eng.,
A181/A182 (1994) 1423-1426.
101.Y. Euruya, H. Kimura and T. Masumoto, Mat. Sci. Eng.,
A181/A182 (1994) 1076-1080.
102.M. Matsumoto, D. Shindo, Y. Furuya, K. Aoki and T.
Masumoto, Mat. Sci. Eng., A181/A182 (1994) 1317-1319.
103.羅一中,台灣大學材料科學與工程學研究所博士論文,1991.
104.田育彰,中原大學醫工所博士論文,2002.
105.K. L. Carraway and D. E. Koshland, Method in Enzymol,
25 (1972) 616.
106.S. Sano, K. Kato and Y. Ikada, Biomaterials, 14 (1993)
817.
107.D. R. Lloyd and C. M. Burns, J. Polym. Sci. Pol.
Chem., 17 (1979) 3459.
108.D. R. Lloyd, and C. M. Burns, J. Polym. Sci. Pol.
Chem., 17 (1979) 3473.
109.Neal S. Young, Stanton L. Gerson, Katherine A. High,
Clinical hematology, 2006.
110.D.S. Tawil,“Corrosion and Surface Protection
Developments”, in the Proceedings of the Conference
of Magnesium Technology, 1986, p.66.
111.戴光勇,鎂合金表面處理技術(上),材料與社會,24 (1998) 57.112. 揚智超,鎂合金材料特性及新製程發展,工業材料,152
(1999) 72-73.
113.黃雨順,冶金熱處理,1981,p.354.
114.戴光勇,鎂合金表面處理技術(下),材料與社會,25 (1989)
27.
115.F.A. Lowenheim, Morden Electroplating, Wiley, New
York, 1974.
116.陳信宏,國立台灣大學機械工程研究所碩士論文,2002.
117.業哲政,鎂合金在汽車產業之應用,經濟部產業經濟與資訊服
務計畫,2002.
118.H. Matsumoto, S. Watanabe and S. Hanada, Mater. Proc.
Technol., 169 (2005) 9.
119.蔡幸甫,“輕金屬在新世代產品的應用與商機”,工研院產業
經濟與資訊服務中心科技專案成果,2002.
120.J.R. Davis, Handbook of Materials for Medical Device,
ASM International, USA, 2003.
121.C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y.
Chino, Scripta Mater., 45 (2001) 1147.
122.Jun Liang, Baogang Guo, Jun Tian, Huiwen Lin, Jinfang
Zhou, Weimin Liu, Tao Xu, Surface & Coatings
Technology, 199 (2005) 121-126.
123.P.L. Bonora, M. Andrei, A Eliezer, E.M. Gutman,
Corrosion Science, 44 (2002) 729-749.
124.F. Stippch, E. Vera, G.K. Wolf, G. Berg, Chr.
Friedrich, Surface and Coatings Technology, 103-104
(1998) 29-35.
125.X.W. Guo, W.J. Ding, C. Lu, C.Q. Zhai, Surface and
Coatings Technology, 183 (2004) 359-368.
126.M. Boinet, S. Verdier, S. Maximovitch, F. Dalard,
Surface & Coatings Technology, 199 (2005) 141-149.
127.A. Grill, Cold Plasma in Materials Fabrication: From
Fundamentals to Applications, IEEE Press, 1994, p.1-23.
128.B. Chapman, Glow Discharge Process, John Wiley & Sons,
Canada, 1980.
129.王潔瑩,中原大學化工所碩士論文,2004.
130.S. D. Lee, G. H. Hsiue, P. C. T. Chang and C. Y. Kao,
Biomaterials, 17 (1996) 1599.
131.U. Vohrer, M. Muller, and C. Oehr, Surface and
Coatings Technology, 98 (1998) 1128.
132.蘇仁濬,台灣大學材料科學與工程學研究所碩士論文,2000.
133.楊士賢,中原大學化工所碩士論文,2005.
134.M. Capitelli and C. Gorse, Plasma Technology:
Fundamentals and Applications, 1992, p.110.
135.羅吉宗,薄膜科技與應用,全華科技圖書,2004.
136.B. Chapman, Glow Discharge Process, Wiley
Interscience, New York, 1976.
137.王志良,成功大學材料所碩士論文,1999.
138.顏世傑,台灣大學材料科學與工程學研究所碩士論文,2004.
139.Chu CL, Wu SK, Yen YC, Mater Sci Eng., A216 (1996) 193-
200.
140.Shinji Takemoto, Tatsuhiro Yamamoto, Kanji Tsuru,
Satoshi Hayakawa, Akiyoshi Osaka, Seisuke Takashima,
Biomaterials, 25 (2004) 3485-3492.
141.Boyan BD, Sylvia VL, Liu Y, Sagun R, Cochran DL,
Lohmann CH, Dean DD, Schwartz Z, Biomaterials, 20
(1999) 2305-2310.
142.Espino JP, Fernandez A, Gonzalez-Elipe AR, Surf Sci.,
295 (1993) 402-410.
143.Green SM, Grant DM, Wood JV, Mater Sci Eng., 224
(1997) 21-26.
144.Chan CM, Trigwell S, Duerig T, Surf Interface Anal.,
15 (1990) 349-354.
145.Wendell M. Latimer, Oxidation Potentials, 2nd dition,
Prentice Hall, 1952.
146.H. Zitter and H. Plenk Jr., J. Biomed. Res., 21 (1987)
881.
147.C. C. Shih, S.J. Lin, K.H. Chung, Y.L. Chen, Y.Y. Su,
J. Biomed. Mater. Res., 52 (2000) 323.
148.Sun ZL, Wataha JC, Hanks CT, J Biomed Mater Res, 34
(1997) 29-37.
149.Wataha JC, Ratanasathienz S, Hank CT, Sun Z, Dent
Mater., 12 (1996) 322-327.
150.Wataha JC, Lockwood PE, Marek M, Ghazi M, J Biomed
Mater Res., 45 (1999) 251-257.
151.Cederbrant K, Anderson C, Anderson T, Marcusson- Stahl
M, Hultman P, Int Arch Allergy Immunol., 132 (2003)
373-379.
152.Nikolas S Harada, Helena T Oyama, Julio R Bartoli,
Douglas Gouvea, Idagene A Cestari and S Hui Wang,
Polym Int., 54 (2005) 209-214.
153.Shabalovskaya SA, Biomed Mater Eng., 12 (2002) 69-109.
154.Armitage D, Parker K, Parker T, Grant D, Int Conf
Shape Memory and Superelastic Technologies. Belgium:
Antverpen; 1999, p.226-239.
155.A. M. Sarmadi, T. H. Ying and F. Denes, Eur. Polym.
J., 31 (1995) 847.
156.A. Pecheur, J.L. Autran, J.P. Lazarri, P. Pinard,
Journal of Non-Crystalline Solids, 245 (1999) 20-26.
157.Hong Xiao, Introduction to Semiconductor Manufacturing
Technology, p.237-238.
158.E. Angelini, S. Grassini, F. Rosalbino, F. Fracassi,
R. d’Agostino, Progress in Organic Coatings, 46
(2003) 107-111.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37469-
dc.description.abstractTi50Ni50與Ti50Ni40Cu10形狀記憶合金在500℃氧化30~60分鐘後可得表面Ni元素濃度較低、表面較平坦以及含有Ni-free region的氧化保護層,因而能夠提升其抗腐蝕性並具有良好之生物相容性。在此氧化膜上利用脈衝式電漿輔助化學氣相沉積法(DC-Pulsed PECVD)沉積六甲基二矽胺(HMDSZ)薄膜並活化表面以產生自由基,接著以UV光誘導接枝聚合丙烯醯胺(AAm),再以碳化二亞胺(EDAC)為促進劑,使薄膜上之胺基與肝素的羧基縮合形成共價鍵,由FTIR光譜結果證明AAm接枝與肝素固定之成功。經肝素固定後進行抗凝血試驗,由SEM可觀察到的確能夠抑制血纖維蛋白網狀構造之形成,而具有抗凝血之效果。本研究同時對AZ91鎂合金進行電漿表面改質,利用DC-Pulsed PECVD於AZ91上沉積HMDSZ-SiO2薄膜。此層薄膜可使水接觸角由85°下降至70°左右,其表面粗糙度也由原本之12nm降至6~8nm,而薄膜之硬度為163.1Hv。在氧氣流量為1sccm、腔體壓力為220mtorr及沉積時間30分鐘下可以得到最快之薄膜沉積速率,且其FTIR光譜之Si-O特徵峰強度最大,在3.5 wt%鹽水中之抗腐蝕性表現也最好,可降低其腐蝕電流密度達3個數量級。zh_TW
dc.description.abstractTi50Ni50 and Ti50Ni40Cu10 Shape Memory Alloys (SMAs) are oxidized in air at 400-600℃. Experimental results indicate that Ti50Ni50 SMA oxidized at 500℃ for 1 hour can obtain a smooth protective oxide layer with a Ni-free region and the best oxidation condition for Ti50Ni40Cu10 SMA is at 500℃ for 30 minutes. The corrosion resistance of oxidized Ti50Ni50 and Ti50Ni40Cu10 SMAs in Hanks’ solution can be improved and oxidized layers on Ti50Ni50 and Ti50Ni40Cu10 SMAs both have good biocompatibility. Thereafter, HMDSZ thin film deposited on these oxidized layers by DC-pulsed PECVD, the AAm thin film coated by grafting polymerization and heparin immobilized on it. These coatings are proved successfully by FTIR. After heparin immobilization, the surface water contact angle decreases from 66° to 37° and the formation of fibrin network can be reduced to achieve the anti-coagulation. In this study, HMDSZ-SiO2 thin films are also deposited on AZ91 Mg alloy by DC-pulsed PECVD of HMDSZ, O2 and Ar mixture. After this thin film deposited at 1sccm O2 flow rate and 220mtorr for 30 minutes, its Si-O intensity is high and the corrosion current density of AZ91 in 3.5 wt% NaCl solution can be reduced up to 3 orders.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:29:14Z (GMT). No. of bitstreams: 1
ntu-97-R95527041-1.pdf: 5064710 bytes, checksum: a2e7e42c43b2afccbae4d98d49fb643a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
致謝 i
摘要 iii
Abstract v
目錄 vii
第一章 前言 1
1-1 TiNi形狀記憶合金之表面改質 1
1-2 鎂合金之表面改質研究 2
第二章 文獻回顧 3
2-1 形狀記憶合金(SMAs)簡介 3
2-1-1 形狀記憶效應(SME) 3
2-1-1-1 熱彈型麻田散體變態 4
2-1-1-2 形狀記憶效應(SME)之機制 5
2-1-2 擬彈性(PE) 6
2-2 TiNi基形狀記憶合金(SMAs) 7
2-2-1 TiNi形狀記憶合金之各相與結晶構造 7
2-2-2 TiNi形狀記憶合金之力學特性 8
2-2-3 TiNi形狀記憶合金之生物相容性 11
2-2-4 TiNi形狀記憶合金之表面改質 13
2-3 TiNiCu三元合金簡介 14
2-4 生物分子之固定 15
2-4-1 固定理論 15
2-4-2 共價鍵接合機制 17
2-4-3 血液與凝血機制 18
2-4-4 生物單體-肝素(Heparin)簡介 19
2-5 鎂合金簡介 20
2-5-1 鎂合金之製備與加工 20
2-5-2 鎂合金之特性 21
2-5-3 鎂合金之用途與限制 21
2-5-4 鎂合金之表面改質 22
2-6 薄膜製程 23
2-6-1 電漿簡介 23
2-6-2 電漿基本反應 24
2-6-3 電漿表面改質 26
2-6-4 電漿輔助化學氣相沈積(PECVD) 27
2-6-5 直流輝光放電(D. C. glow discharge) 28
2-6-6 脈衝式直流電漿輔助化學氣相沈積(Pulsed-DC PECVD) 30
第三章 實驗方法及步驟 51
3-1 TiNi基形狀記憶合金之表面改質 51
3-1-1 TiNi基SMAs之製備 51
3-1-2 氧化膜之生成 52
3-1-3 薄膜製程設備 52
3-1-4 沉積HMDSZ薄膜 52
3-1-5 薄膜接枝聚合AAm 53
3-1-6 肝素之固定 53
3-2 TiNi基SMAs表面改質後之實驗分析 54
3-2-1 DSC量測實驗 54
3-2-2 XRD繞射分析 54
3-2-3 薄膜表面型態之量測 54
3-2-4 輝光放電表面縱深成份分佈 54
3-2-5 電化學分析 55
3-2-6 生物相容性實驗 55
3-2-6-1 細胞毒性試驗(Cytotoxicity Assay) 55
3-2-6-2 細胞存活率試驗(Cell Viability, MTT Assay) 56
3-2-7 微區傅利葉轉換紅外線光譜儀(Micro-FTIR) 56
3-2-8 水接觸角之量測 57
3-2-9 血纖維蛋白網狀構造(Fibrin Network)之觀察 57
3-3 鎂合金之表面改質 58
3-3-1 AZ91鎂合金之製備 58
3-3-2 薄膜製程設備 58
3-3-3 HMDSZ-SiO2薄膜之製備 58
3-4 鎂合金表面改質後之實驗分析 59
3-4-1 薄膜沉積速率之量測 59
3-4-2 水接觸角與表面粗糙度之量測 59
3-4-3 薄膜化學性質之量測 59
3-4-4 硬度試驗 59
3-4-5 抗蝕性之評估試驗 60
第四章 TiNi基SMAs表面改質之結果與討論 73
4-1 氧化膜性質 73
4-1-1 DSC量測結果 73
4-1-2 氧化薄膜結晶構造XRD分析 73
4-1-3 表面型態之觀察 74
4-1-4 表面縱深成份分佈 75
4-1-5 電化學實驗評估 78
4-1-6 生物相容性之探討 79
4-1-7 TiNi SMAs氧化熱處理表面改質之結論 80
4-2 表面接枝及抗凝血藥物之固定 81
4-2-1 FT-IR之分析結果 82
4-2-2 水接觸角 83
4-2-3 抗凝血之試驗分析 83
4-2-4 TiNi SMAs接枝AAm及固定肝素後薄膜性能探討之結論 84
第五章 AZ91鎂合金表面改質之結果與討論 103
5-1 薄膜性質 103
5-1-1 直流脈衝式電漿波形 103
5-1-2 薄膜沉積速率 103
5-1-3 水接觸角與表面粗糙度 105
5-1-4 FT-IR之結果 105
5-1-5 硬度試驗之結果 106
5-2 抗腐蝕性之分析結果 107
第六章 結論 122
參考文獻 123
dc.language.isozh-TW
dc.titleTiNi形狀記憶合金及AZ91鎂合金沉積HMDSZ薄膜表面改質之研究zh_TW
dc.titleSurface Modification Studies of HMDSZ Thin Film Deposited on TiNi Shape Memory Alloys and AZ91 Mg Alloyen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林新智,楊木榮,周棟勝,洪衛朋
dc.subject.keywordTi50Ni50 / Ti50Ni40Cu10形狀記憶合金,AZ91鎂合金,六甲基二矽胺,脈衝式電漿輔助化學氣相沉積法,生物相容性,肝素,抗腐蝕性,zh_TW
dc.subject.keywordTi50Ni50 and Ti50Ni40Cu10 Shape Memory Alloys,AZ91,HMDSZ,DC-pulsed PECVD,Biocompatibility,Heparin,Corrosion resistance,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2008-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved