請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37466完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張國柱 | |
| dc.contributor.author | Pei-Shan Tsai | en |
| dc.contributor.author | 蔡佩珊 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:29:08Z | - |
| dc.date.available | 2008-08-14 | |
| dc.date.copyright | 2008-08-14 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-16 | |
| dc.identifier.citation | Abe T, Ohga Y, Nobuoki T, Kobayashi S, Sakata S, Misawa H, Tsuyushi T, Kohzuki H, Suga H, Taniguchi S, Takaki M. Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Phyiol Heart Circ Physiol 2002; 282: H138-H148.
Abiru T, Watanabe Y, Kamata K, Kasuy Y. Changes in endothelium-dependent relaxation and levels of cyclic nucleotides in the perfuse mesenteric arterial bed from streptozotozin-induced diabetic rats. Life Sci 1993; 53: 7-12. Amarnath V, Amarnath K, Amarnath K, Davies S, Roberts LJ 2nd. Pyridoxamine: an extremely potent scavenger of 1, 4-dicarbonyls. Chem Res Toxicol 2004; 17: 410-415. Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 2002; 1: 1. Ballermann B, Skorecki K, Brenner B. Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rats. Rennl Fluid Electrolyte Physiol 1984; 16: F110-F116. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004; 63: 582-592. Booth AA, Khalifah RG, Hudson BG. Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine. Biochem Biophys Res Commun 1996; 220: 113-119. Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A, et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 1993; 143: 1699-1712. Brock JW, Hinton DJ, Cotham WE, Metz TO, Thorpe SR, Baynes JW, Ames JM. Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease. J Proteome Res 2003; 2: 506-513. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-820. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 1985; 34: 938-941. Bukala R, Cerami A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol 1992; 23: 1-34. Burattini R, Fioretti S, Jetto L. A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state. Comput Biomed Res 1985; 18: 303-312. Cai H, Harrison DG.. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res 2000; 87: 840-844. Cai W, He JC, Zhu L, Chen X, Striker GE. Vlassara H. AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am J Physiol Cell Physiol 2008; 294: C145–C152. Cameron NE, Gibson TM, Nangle MR, Cotter MA. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci 2005;1043:784-792. Carl J, Wilmer W. Aortic input impedance in cardiovascular disease. Prog Cardiovasc Dis 1982; 4: 307-318. Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, Lee A, Al Abed Y, Vlassara H, Bucala R, Cerami A. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A 1997; 94: 13915-13920. Chang KC, Hsu KL, Tseng CD, Lin YD, Cho YL, Tseng YZ. Aminoguanidine prevents arterial stiffening and cardiac hypertrophy in streptozotocin-induced diabetes in rats. Br J Pharmacol 2006; 147: 944-950. Chang KC, Hsu KL, Tseng YZ. Effects of diabetes and gender on mechanical properties of the arterial system in rats: Aortic Impedance Analysis. Exp Biol Med 2003; 228: 70-78. Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW, Thorpe SR, Baynes JW. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int 2002; 61: 939-950. Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol 1998; 44: 1139-1145. Dröge W. Oxidative stress and aging. Adv Exp Med Biol 2003; 543: 191-200. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 2000; 97: 12222-12226. Esposito K, Marfella R, Giugliano D. Hyperglycemia and heart dysfunction: an oxidant mechanism contributing to heart failure in diabetes. J. Endocrinol. Invest 2002; 25: 485-488. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23: 599-622. Ganguly P, Pierce G, Dhalla K, Dhalla N. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol Endocrinol Metab 1983; 244: E528-E535. Garber A. Atenuating CV risk factors in patients with diabetes: clinical evidence to clinical practice. Diabetes Obes Metab 2002; suppl 1: 5-12. Giugliano D, Ceriello A, Paolisso G.. Oxidative stress and diabetic vascular complications. Diabetes Care 1996; 19: 257-267. Glomb MA, Monnier VM. Mechanism of protein modification by glyoxal andglycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 1995; 270: 10017-10026. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006; 114: 597-605. Gotzsche O. The adrenergic β-receptor adenylate cyclase system in heart and lymphocytes from streptozotocin-diabetic rats. In vivo and in vitro evidence for a desensitized myocardial β-receptor. Diabetes 1983; 32: 1110-1116. Gustafson RL, Martell AE. Stabilities of metal chelates of pyridoxamine. Arch Biochem Biophys 1957; 68: 485-498. Hebden RA, Gardiner SM, Bennett T, Macdonald IA. The influence of streptozoptocin-induced diabetes mellitus on fluid and electrolyte handling in rats. Clin Sci 1986; 70: 111-117. Heyliger CE, Prakash A, McNeill JH. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol Heart Circ Physiol 1987; 252: H540-H544. Jain SK. Vitamin B6 (pyridoxamine) supplementation and complications of diabetes. Metabolism 2007; 56: 168-171. Jain SK, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic Biol Med 2001; 30: 232-237. Joffe II, Travers KE, Perreault-Micale CL, Hampton T, Katz SE, Morgan JP, Douglas PS. Abnormal cardiac function in the streptozotocin-induced, non-insulin dependent diabetic rat. J Am Coll Cardiol 1999; 34: 2111-2119. Kimball T, Daniels S, Khoury P, Magnotti R, Turner A, Dolan L. Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation 1994; 90: 357-361. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999; 274: 31740-31749. Kofo-Abayomi A, Lucus PD. A comparison between atria from control and streptozotocin-diabetic rats: the effects of dietary myoinositol. Br J Pharmacol 1988; 93: 3-8. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 1997; 94: 6474-6479. Lambert J, Aarsen M, Donker AJ, Stehouwer CD. Endothelium-dependent and -independent vasodilation of large arteries in normoalbuminuric insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 1996; 16: 705-711. Laxminarayan S, Sipkema P, Westerhof N. Characterization of the arterial system in the time-domain. IEEE Trans Piomed Eng 1978; 25: 177-184. Lee AT, Cerami A. Role of glycation in aging. Ann N Y Acad Sci 1992; 663: 63-70. Lee M, Gardin J, Smith VE, Tracy R, Savage P, Szklo M, Ward V. Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. Am Heart J 1997; 133: 36-43. Li J, Schmidt AM. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 1997; 272: 16498-16506. Liu Z, Brin K, Yin F. Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Physiol 1986; 251: H588-H600. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW, Lyons TJ. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 1993;91: 2470-2478. Méndez JD. Advanced glycosylation end products and chronic complications of diabetes mellitus. Gac Med Mex 2003;139: 49-55. Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003; 22: 5734-54. Milnor WR Arterial impedance as ventricular afterload. Circ Res 1975; 36: 565-570. Milnor WR. Hemodynamics 2nd ed. Baltimore, Md: Williams and Wilkins Co, 1989: pp167–203. Mitchell G, Pfeffer M, Westeshof N, Pfeffer J. Measurement of aortic imput impedance in rats. Am J Physiol 1994; 267: H1907-H1915. Miyata T, van Ypersele de Strihou C, Ueda Y, Ichimori K, Inagi R, Onogi H, Ishikawa N, Nangaku M, Kurokawa K. Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol 2002; 13 :2478-2487. Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB 1995; 9: 1319-1330. Murata T, Nagai R, Ishibashi T, Inomuta H, Ikeda K, Horiuchi S. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia 1997; 40: 764-769. Nagaraj RH, Sarkar P, Mally A, Biemel KM, Lederer MO, Padayatti PS. Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys 2002; 402: 110-119. Nicholl ID, Bucala R. Advanced glycation endproducts and cigarette smoking. Cell Mol Biol 1998; 44: 1025-1033. Nicholl ID, Stitt AW, Moore JE, Ritchie AJ, Archer DB, Bucala R. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol Med 1998; 4: 594-601. Nichols WW, Conti C, Walker W. Input impedance of the systemic circulation in man. Circ Res 1977; 40: 451-460. Nichols WW, O’Rourke MF. Mcdonald’s blood flow in arteries. London: Arnold, 1998. Nichols WW, Pepine C, Geiser E. Vascular load defined by the aortic input impedance spectrum. Fed Proc 1980; 39: 196-210. Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidny Int 2000; 58: S26-S30. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787-790. Noble M, Gade I, Frenchard D. Blood pressure and flow in the ascending aorta of conscious dogs. Cardiovasc Res 1976; 1: 9-21. Padival S, Nagaraj RH. Pyridoxamine inhibits maillard reactions in diabetic rat lenses. Ophthalmic Res 2006; 38: 294-302. Parving H, Viberti G, Keen H, Christiansen J, Lassen N. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism 1983; 32: 943-949. Peng YI, Chang KC. Acute effects of methoxamine on left ventricular-arterial coupling in streptozotocin-diabetic rats: a pressure-volume analysis. Can J Physiol Pharmacol 2000; 78: 415-422. Pieper GM. Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus. Diabetologia 1999; 42: 204-213. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 1995; 34: 10872-10878. Riihimaa PH, Suomine K, Knip M, Tapanainen P, Tolonen U. Cardiovascular autonomic reactivity is decreased in adolescents with type 1 diabetes. Diabet Med 2002; 19: 932-938. Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, Allenberg J, Otto G, Roth H, Bierhaus A, Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. Am J Pathol 1995; 146: 688-694. Rojas A, Morales MA. Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Life Sci 2004; 76: 715-730. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212: 167-178. Ross J, Covell J, Sonnenbuck E, Braunwald E. Contractile state of the heart characterized by force-velocity relations in variable afterload and isovolumic beats. Circ Res 1966; 18: 149-163. Sampson DA, O’Connor DK. Analysis of B-6 vitamers and pyridoxic acid in plasma, tissues and urine using high performance liquid chromatography. Nutr Res 1989; 9: 259-272. Schmidt AM, Hasu M, Popov D, Zhang JH, Chen J, Yan SD, Brett J, Cao R, Kuwabara K, Costache G, Simionescu N, Simionescu M, Stern D. Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Nat1 Acd Sci USA 1994; 91: 8807-8811. Schmidt AM, Stern D. Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep 2000; 2: 430-436. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992; 267: 14987-14997. Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 2001; 108: 949-955. Sebekova K, Faist V, Hofmann T, Schinzel R, Heidland A. Effects of a diet rich in advanced glycation end products in the rat remnant kidney model. AM J Kidney Dis 2003; 41(Suppl 1): S48-S51. Sipkema P, Westerhof N, Randall O. The arterial system characterized in the time domain. Cardiovas Res 1980; 14: 270-279. Smith JM, Paulson DJ, Romano FD. Inhibition of nitric oxide synthase by L-NAME improves ventricular performance in streptozotocin-diabetic rats. J Mol Cell Cardiol 1997; 29: 2329-2402. Snell EE. The vitamin activities of ‘pyridoxal’ and ’pyridoxamine.’ J Biol Chem 1994; 154: 313-314. Snell EE. The vitamin B6 group. V. The reversible interconversion of pyridoxal and pyridoxamine by transamination reactions. J Am Chem 1945; 67: 194-197. Stadler K, Jenei V, Somogyi A, Jakus J. Beneficial effects of aminoguanidine on cardiovascular system of diabetic rats. Diabetes Metab Res Rev 2005; 21: 189-196. Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I. Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 2003; 5: 789-794. Takatori A, Ishii Y, Itagaki S, Kyuwa S, Yoshikawa Y. Amelioration of the beta-cell dysfunction in diabetic APA hamsters by antioxidants and AGE inhibitor treatments. Diabetes Metab Res Rev 2004; 20: 211-218. Taylor AA. Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinol Metab Clin North Am 2001; 30: 983-997. Thomas MC, Baynes JW, Thorpe SR, Cooper ME. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets 2005; 6: 453-474. Thomson L, Trujillo M, Telleri R, Radi R. Kinetics of cytochrome c2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys 1995; 319: 491-497. Tomlinson K, Gardiner S, Bennett T. Blood pressure in streptozotocin-treated Brattleboro and Long-evans rats. Am J Physiol 1990; 258: R852-R859. Tomlinson K, Gardiner S, Hebden R, Bennett T. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 1992; 44: 103-150. Tomlinson KC, Gardiner SM, Bennett T. Diabetes mellitus in Brattleboro rats: cardiovascular, fluid, and electrolyte status. Am. J. Physiol. 1989; 256: R1279-R1285. Turk Z, Mišur I, Turk N, Benko B. Rat tissue collagen modified by advanced glycation: correlation with duration of diabetes and glycemic control. Clin Chem Lab Med 1999; 37: 813-820. Unger RH, Foster DW. Diabetes mellitus. William Textbook of Endocrinology. Philadelphia, Pa: WB Saunders Co, 1998: pp973-1059. Violi F, Marino R, Milite MT, Loffredo L. Nitric oxide and its role in lipid peroxidation. Diabetes Metab Res Rev 1999;15: 283-288. Voziyan PA, Khalifah RG, Thibaudeau C, Yildiz A, Jacob J, Serianni AS, Hudson BG. Modification of proteins in vitro by physiological levels of glucose: pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metal ions. J Biol Chem 2003; 278: 46616-46624. Vranes D, Cooper ME, Dilley RJ. Cellular mechanism of diabetic vascular hypertrophy. Microvasc Res 1999; 5: 8-18. Wada R, Yagihashi S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci. 2005; 1043: 598-604. Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 1995; 34: 3702-3709. Westerhof N, Sipkema P, Van Den Bos G, Elzinga G.. Forward and backward waves in the arterial system. Cardiovasc Res 1972; 6: 648-656. Wilkinson IB, MacCallum H, Rooijmans DF, Murray GD, Cockcroft JR, McKnight JA, Webb DJ. Increased augmentation index and systolic stress in type 1 diabetes mellitus. QJM 2000; 93: 441-448. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J 1987; 245: 243-250. Zatz R, Brenner BM. Pathogenesis of diabetic microangiopathy: the hemodynamic view. Am J Med 1986; 80: 443-453. Zyzak DV, Richardson JM, Thorpe SR, Baynes JW. Formation of reactive intermediates from Amadori compounds under physiological conditions. Arch Biochem Biophys 1995; 316: 547-554. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37466 | - |
| dc.description.abstract | 背景:動脈管壁中的膠原蛋白間所形成之醣化最終產物 (advanced glycation end products, AGEs),是導致糖尿病引發血管傷害的主因之一。本篇的研究目的是釐清pyridoxamine (PM) 這項AGEs抑制劑,在streptozotocin誘發之糖尿病大鼠中,對於減緩動脈硬化及心室肥
大等病徵所扮演的角色。 方法:八週大的Wistar-Kyoto大鼠從尾部靜脈注射streptozotocin (STZ, 55 mg kg-1) 以誘發糖尿病。兩天後經檢測確定已顯現高血糖病徵,再每天餵予PM(一公克溶於一公升的飲用水) 進行為期八週的療程, 並以年齡匹配之糖尿病鼠作為對照組別。 結果:與糖尿病鼠組別相較,經由PM治療八週後的糖尿病鼠顯示,無論在心輸出量、主動脈血壓相關數據、總周邊阻力及主動脈特徵阻抗等參數上均無差異。相對的,在經PM治療後,波傳輸時間 (wave transit time, τ) 明顯增加 (20.80±0.45 v.s. 25.11±0.56 ms, P<0.01),且波反射係數大幅降低 (0.744±0.047 v.s. 0.485±0.028, P<0.01)。波反射係數下降及波傳輸時間上升,顯示PM能改善糖尿病所造成左心室收縮負荷的增加。此外,心室重量以體重校正後之比值 (心室肥厚的指標) 亦可經由投予PM後減少,這顯示糖尿病所導致的心室肥厚可因PM降低左心室後負荷的作用而獲得改善。另外,醣化作用會促進主動脈管壁中膠原蛋白含量的增加,此現象亦可經由PM的治療得到改 善。 結論:經過PM長期治療後,能顯著改善糖尿病所引起之血管力學傷害,推測可能是由於PM抑制動脈管壁AGEs的形成與累積所致。 | zh_TW |
| dc.description.abstract | Objective: The formation of advanced glycation end products (AGEs) on collagen within the arterial wall is one of the major factors responsible for the development of diabetic vascular injury. This study was performed to examine the role of pyridoxamine (PM), an inhibitor of AGEs formation, in prevention of arterial stiffening and cardiac hypertrophy in
streptozocin (STZ) induced diabetes in rats. Methods: Diabetes was induced in Wistar-Kyoto rats by a single tail vein injection with STZ (55 mg kg-1). After confirmation of development of hyperglycemia (2 days later), rats were treated for 8 weeks with PM (1 g L-1 in drinking water) and compared with the age-matched untreated diabetic controls. Results: After exposure to PM, the STZ-diabetic rats showed no alterations in cardiac output, aortic pressure profiles, total peripheral resistance, and aortic characteristic impedance. In contrast, treatment of this experimental diabetes with PM resulted in a significant increase in wave transit time (τ), from 20.80±0.45 to 25.11±0.56 ms (P<0.01) and a decrease in wave reflection factor (Rf), from 0.744±0.047 to 0.485±0.028 (P<0.01). The decreased Rf associated with the increased τ suggest that PM may retard the diabetes-induced augmentation in systolic load of the left ventricle coupled to its arterial system. Meanwhile, the diminished ratio of left ventricular weight to body weight suggests that prevention of the diabetes-related cardiac hypertrophy by PM may correspond to drug-induced decline in aortic stiffening. Glycation-derived modification on aortic collagen was also found to be enhanced in rats with diabetes and the advanced glycation process was retarded by PM treatment. Conclusions: We concluded that long-term administration of PM to the STZ-treated rats imparts significant protection against the diabetes-derived deterioration in vascular dynamics, in part through inhibition of the accumulation of AGEs on collagen in the arterial wall. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:29:08Z (GMT). No. of bitstreams: 1 ntu-97-R92441006-1.pdf: 1025609 bytes, checksum: c4f126c227c6702b680a6f375a05d467 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………i
誌謝………………………………………………………………………ii 縮寫名詞對照表……………………………………………………….vi 中文摘要……………………………………………………………….ix 英文摘要………………………………………………………………xi 緒論……………………………………………………………………1 糖尿病的併發症………………………………………………………1 Advanced Glycation End Products的形成…………………………3 Pyridoxamine………………………………………………………...12 動脈物理性質之量化………………………………………………15 主動脈輸入阻抗頻譜的特性及功能………………………………15 材料與方法……………………………………………………………19 實驗流程…………………………………………………………19 一、實驗動物製備………………………………………………19 二、實驗動物分組………………………………………………20 三、血液中葡萄糖濃度測定………………………………………20 四、血壓波及血流波之測量………………………………………21 五、手術流程………………………………………………………22 六、資料轉換與分析方法…………………………………………24 七、左心室比率…………………………………………………31 八、主動脈管壁中醣化膠原蛋白粹取……………………31 九、膠體電泳……………………………………………………32 十、統計…………………………………………………………33 結果……………………………………………………………………34 基本資料……………………………………………………………34 主動脈輸入阻抗頻譜………………………………………………35 穩態基本血行力學參數……………………………………………35 脈態參數……………………………………………………………36 膠體電泳結果………………………………………………………36 討論……………………………………………………………………38 PM攝取量之差異…………………………………………………38 糖尿病及PM對心血管動脈物理特性之影響……………………38 一、基本資料方面……………………………………………….38 二、穩態參數方面………………………………………………40 三、脈態參數方面………………………………………………42 PM對糖尿病之主動脈管壁組成成分的影響……………………...45 結論……………………………………………………………………..47 表次……………………………………………………………………..48 表一:糖尿病及投予PM,對於雄性Wistar大鼠之血糖、體重、左心室重量及主動脈血壓相關數據的影響…………………………48 圖次……………………………………………………………………49 圖一:升主動脈之血壓波及血流波、升主動脈特徵阻抗頻譜之振幅、相位及脈衝響應………………………………………………49 圖二:糖尿病及投予PM,對於雄性Wistar大鼠之基礎心跳速率 (HR)、心輸出量 (CO)、心搏量 (SV) 及總周邊阻力 (Rp) 的影響 ……………………………………………………………………….50 圖三:糖尿病及投予PM,對於雄性Wistar大鼠之主動脈特徵阻抗 (Zc)、主動脈平均壓所對應之動脈容積度 (Cm)、波反射係數 (Rf) 及波傳輸時間 (τ) 的影響…………………………………………51 圖四:膠體電泳圖 (SDS-PAGE),PM及糖尿病對大鼠主動脈管壁中之醣化膠原蛋白堆積情形的影響……………………………….52 參考文獻………………………………………………………………..53 | |
| dc.language.iso | zh-TW | |
| dc.subject | pyridoxamine | zh_TW |
| dc.subject | 醣化最終產物 | zh_TW |
| dc.subject | 主動脈輸入阻抗 | zh_TW |
| dc.subject | STZ糖尿病鼠 | zh_TW |
| dc.subject | 波反射 | zh_TW |
| dc.subject | aortic input impedance | en |
| dc.subject | pyridoxamine | en |
| dc.subject | pulse wave reflection | en |
| dc.subject | streptozotocin-diabetic rats | en |
| dc.subject | advanced glycation end products | en |
| dc.title | Pyridoxamone能延緩STZ誘發之糖尿病鼠之動脈硬化及心室肥厚 | zh_TW |
| dc.title | Pyridoxamine prevents arterial stiffening and cardiac hypertrophy in streptozotocin-induced diabetes in rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳朝峰,許寬立,賴凌平 | |
| dc.subject.keyword | 醣化最終產物,主動脈輸入阻抗,STZ糖尿病鼠,波反射,pyridoxamine, | zh_TW |
| dc.subject.keyword | advanced glycation end products,aortic input impedance,streptozotocin-diabetic rats,pulse wave reflection,pyridoxamine, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
