Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37439
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂學一(Hsueh-I Lu)
dc.contributor.authorTsung-Hao Liuen
dc.contributor.author劉宗灝zh_TW
dc.date.accessioned2021-06-13T15:28:12Z-
dc.date.available2008-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-16
dc.identifier.citation[1] F. Berger, P. Gritzmann, and S. de Vries. Minimum cycle bases for network graphs. Algorithmica, 40:51–62, 2004.
[2] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.
[3] J. C. de Pina. Applications of Shortest Path Methods. PhD thesis, University of Amsterdam, Netherlands, 1995.
[4] G. N. Frederickson and R. Janardan. Designing networks with compact routing tables. Algorithmica, 3:171–190, 1988.
[5] A. Golynski and J. D. Horton. A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In Proceedings of the 8th Scandinavian Workshop on Algorithm Theory, pages 200–209, 2002.
[6] R. Hammack. Minimum cycle bases of direct products of bipartite graphs. Australasian Journal of Combinatorics, 36:213–221, 2006.
[7] R. Hammack. Minimum cycle bases of direct products of complete graphs. Information Processing Letters, 102(5):214–218, 2007.
[8] R. Hariharan, T. Kavitha, and K. Mehlhorn. A faster deterministic algorithm for minimum cycle bases in directed graphs. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, pages 250–261, 2006.
[9] D. Hartvigsen and R. Mardon. The all-pairs min cut problem and the minimum cycle basis problem on planar graphs. SIAM Journal on Discrete Mathematics, 7(3):403–418, 1994.
[10] J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on Computing, 16(2):358–366, 1987.
[11] E. Hubicka and M. M. Syslo. Minimal bases of cycle of a graph. In M. Fiedler, editor, Recent Advances in Graph Theory, the 2nd Czech Symposium in Graph Theory, pages 283–293, 1975.
[12] W. Imrich and P. F. Stadler. Minimum cycle bases of product graphs. Australasian Journal of Combinatorics, 26:233–244, 2002.
[13] M. M. Jaradat. On the basis number and the minimum cycle bases of the wreath product of some graphs. Discussiones Mathematicae Graph Theory, 26:113–134, 2006.
[14] M. M. Jaradat and M. K. Al-Qeyyam. On the basis number and the minimum cycle bases of the wreath product of two wheels. International Journal of Mathematical Combinatorics, 1:52–62, 2008.
[15] T. Kavitha. An ˜O (m2n) randomized algorithm to compute a minimum cycle basis of a directed graph. In Proceedings of the 32nd International Colloquium on Automata, Languages and Programming, pages 273–284, 2005.
[16] T. Kavitha and K. Mehlhorn. A polynomial time algorithm for minimum cycle basis in directed graphs. In Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science, pages 654–665, 2005.
[17] T. Kavitha and K. Mehlhorn. Algorithms to compute minimum cycle basis in directed graphs. Theory of Computing Systems, 40(4):485–505, 2007.
[18] T. Kavitha, K. Mehlhorn, and D. Michail. New approximation algorithms for minimum cycles bases of graphs. In Proceedings of the 24th Symposium on Theoretical Aspects of Computer Science, pages 512–523, 2007.
[19] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. A faster algorithm for minimum cycle basis of graphs. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming, pages 846–857, 2004.
[20] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. An ˜O(m2n) algorithm for minimum cycle basis of graphs. Algorithmica, to appear.
[21] E. Kolasinska. On a minimum cycle basis of a graph. Zastosowania Matematyki, 16:631– 639, 1980.
[22] J. Leydold and P. F. Stadler. Minimal cycle bases of outerplanar graphs. Electronic Journal of Combinatorics, 5:209–222, 1998.
[23] C. Liebchen and R. Rizzi. A greedy approach to compute a minimum cycle basis of a directed graph. Information Processing Letters, 94(3):107–112, 2005.
[24] C. Liebchen and R. Rizzi. Classes of cycle bases. Discrete Applied Mathematics, 155(3):337–355, 2007.
[25] K. Mehlhorn. Minimum cycle bases in graphs — algorithms and applications. In Proceedings of the 32nd International Symposium on Mathematical Foundations of Computer Science, pages 13–14, 2007.
[26] K. Mehlhorn and D. Michail. Implementing minimum cycle basis algorithms. Journal of Experimental Algorithmics, 11:2.5, 2006.
[27] K. Mehlhorn and D. Michail. Minimum cycle bases: Faster and simpler. Submitted for publication, 2007.
[28] D. Michail. Minimum Cycle Basis. PhD thesis, Saarland University, Germany, 2006.
[29] P. F. Stadler. Minimum cycle bases of halin graphs. Journal of Graph Theory, 43(2):150–155, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37439-
dc.description.abstract本論文提出第一個在加權外部平面圖(weighted outerplanar graph) 上計算最小迴圈基底(minimum cycle basis) 的最佳演算法。更精確地說, 對於任何一個擁有n 個點的加權外部平面圖G, 本論文提出一個O(n) 時間的演算法, 對G 的一組最小迴圈基底C 計算出一個O(n) 空間的精簡表示 (compact representation) Z(C) 。此外, C 中的每一個迴圈, 可在每條邊花費O(1) 時間的情況下由 Z(C) 得知。zh_TW
dc.description.abstractWe give the first known optimal algorithm that computes a minimum cycle basis for any weighted outerplanar graph. Specifically, for any n-node edge-weighted outerplanar graph G, we give an O(n)-time algorithm to obtain an O(n)-space compact representation Z(C) for a minimum cycle basis C of G. Each cycle in C can be computed from Z(C) in O(1) time per edge.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:28:12Z (GMT). No. of bitstreams: 1
ntu-97-R95922122-1.pdf: 296753 bytes, checksum: f006b51dcb13aac6f558e60435d568d5 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgements i
Chinese Abstract ii
English Abstract iii
Contents iv
List of Figures vi
1 Introduction 1
2 Basics 5
2.1 Lex short cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Tight cycles and loose cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 The Algorithm 10
3.1 The compact representation for tight cycles . . . . . . . . . . . . . . . . . . . . 10
3.2 The compact representation for loose cycles . . . . . . . . . . . . . . . . . . . . 11
3.3 Proving Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Concluding Remarks 14
Bibliography 15
dc.language.isoen
dc.subject資料結構zh_TW
dc.subject迴圈基底zh_TW
dc.subject外部平面圖zh_TW
dc.subjectcycle basisen
dc.subjectdata structureen
dc.subjectouterplanaren
dc.title加權外部平面圖之最小迴圈基底zh_TW
dc.titleMinimum Cycle Bases of Weighted Outerplanar Graphsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何瑁鎧,張薰文
dc.subject.keyword迴圈基底,外部平面圖,資料結構,zh_TW
dc.subject.keywordcycle basis,outerplanar,data structure,en
dc.relation.page18
dc.rights.note有償授權
dc.date.accepted2008-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
289.8 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved