Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37437
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳乃立(Nae-Lih Wu)
dc.contributor.authorYu-Hung Chenen
dc.contributor.author陳育宏zh_TW
dc.date.accessioned2021-06-13T15:28:07Z-
dc.date.available2011-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-16
dc.identifier.citationReferences
1. X. Liu, T. Momma, and T. Osaka, Chem. Lett., “Improvement of active carbon fiber electrode for electric double layer capacitor by electrochemical redox pretreatment”, 1996, 115 (1996).
2. B. E. Conway, V. Birss, and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources, 66, 1 (1997).
3. B. E. Conway, “Transition from supercapacitor to battery behavior in electrochemical energy-storage”, J. Electrochem. Soc., 138, 1539 (1991).
4. I. Tanahashi, A. Yoshida, and A. Nishino, “Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors”, J. Electrochem. Soc., 137, 3052 (1990).
5. R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45, 2483-2498 (2000).
6. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Plenum press, New York (1999).
7. A. Nishino, Carbon, 132, 57 (1988).
8. H. von Helmholtz, Ann. Phys. (Leipzig), 89, 211 (1853).
9. J. S. Reed, Introduction to the Principles of Ceramic Processing, p. 140, John Wiley & Sons, Inc., New York (1988).
10. K. C. Liu and M. A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors”, J. Electrochem. Soc., 143, 124 (1996).
11. J. P. Zheng and T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc., 142, L6 (1995).
12. J. P. Zheng and T. R. Jow, “High energy and high power density electrochemical capacitors”, J. Power Sources, 62, 155 (1996).
13. H. Y. Lee and J. B. Goodenough, “Supercapacitor behavior with KCl electrolyte”, J. Solid State Chem., 144, 220 (1999).
14. S. C. Pang, M. A. Anderson, and T. W. Chapman, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., 147, 444 (2000).
15. S. Y. Wang, “Characterization and mechanism of Fe3O4/carbon supercapacitors”, Ph.D Thesis, Department of Chemical Engineering, National Taiwan University, p. 17-18 (2004).
16. B. E. Conway, W. G. Pell, and T. C. Liu, “Diagnostic analyses for mechanism of self-discharge of electrochemical capacitors and batteries”, J. Power Sources, 65, 53-59 (1997)
17. B. W. Ricketts and C. Ton-That, “Self-discharge of carbon-based supercapacitors with organic electrolytes”, J. Power Sources, 89, 64-69 (2000)
18. A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources, 91, 37 (2000).
19. E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, 39, 937-959 (2001).
20. H. Yang, M. Yoshio, K. Isono, and R. Kuramoto, “Improvement of commercial activated carbon and its application in electric double layer capacitors”, Electrochem. Solid-State Lett., 5, A141-A144 (2002).
21. D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources, 74, 99-107 (1998).
22. K. Kinishita, Carbon: Electrochemical and physicochemical properties, Wiley, New York (1988).
23. K. Jurewicz, K. Babel, A. Źiółkowski, and H. Wachowska, “Ammoxidation of active carbons for improvement of supercapacitor characteristics”, Electrochim. Acta, 48, 1491-1498 (2003).
24. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, and J. Machnikowski, “Electrochemical capacitors based on highly porous carbons prepared by KOH activation”, Electrochim. Acta, 49, 515-523 (2004).
25. T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, “Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor”, J. Power Sources, 60, 249-253 (1996).
26. T. R. Jow and J. P. Zheng, “Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide”, J. Electrochem. Soc., 145, 49-82 (1998).
27. J. P. Zheng, “Ruthenium oxide-carbon composite electrodes for electrochemical capacitors”, Electrochem. Solid-State Lett., 2, 359-361 (1999).
28. C. C. Hu and Y. H. Huang, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., 146, 2465-2471 (1999).
29. I. H. Kim and K. B. Kim, “Ruthenium oxide thin film electrodes for supercapacitors”, Electrochem. Solid-State Lett., 4, A62-A64 (2001).
30. J. Zhang, D. Jiang, B. Chen. J. Zhu, L. Jiang, and H. Fang, “Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor”, J. Electrochem. Soc., 148, A1362-A1367 (2001).
31. H. Y. Lee, V. Manivannan, and J. B. Goodenough, “Electrochemical capacitors with KCl electrolyte”, C. R. Acad. Sci. Paris, t. 2, serie II c, 565-577 (1999).
32. H. Y. Lee, S. W. Kim, and H. Y. Lee, “Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode”, Electrochem. Solid-State Lett., 4, A19-A22 (2001).
33. M. Toupin, T. Brousse, and D. Bélanger, “Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide”, Chem. Mater., 14, 3946-3952 (2002).
34. C. C. Hu and T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Commun., 4, 105-109 (2002).
35. C. C. Hu and T. W. Tsou, “Capacitive and textual characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim. Acta, 47, 3523-3532 (2002).
36. M. S. Hong, S. H. Lee, and S. W. Kim, “Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor”, Electrochem. Solid-State Lett., 5, A227-A230 (2002).
37. J. Jiang and A. Kucernak, “Electrochemical supercapacitor material based in manganese oxide: preparation and characterization”, Electrochim. Acta, 47, 2381-2386 (2002).
38. Y. U. Jeong and A. Manthiram, “Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes”, J. Electrochem. Soc., 149, A1419-A1422 (2002).
39. H. Kim and B. N. Popov, “Synthesis and characterization of MnO2-based mixed oxides as supercapacitors”, J. Electrochem. Soc., 150, D56-D62 (2003).
40. J.-K. Chang and W.-T. Tsai, “Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors”, J. Electrochem. Soc., 150, A1333-A1338 (2003).
41. R. N. Reddy and R. G. Reddy, “Sol-gel MnO2 as an electrode material for electrochemical capacitors”, J. Power Sources, 124, 330-337 (2003).
42. R. N. Reddy and R. G. Reddy, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material”, J. Power Sources, 132, 315-320 (2004).
43. M. Toupin. T. Brousse. and D. Belanger, “Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor”, Chem. Mater., 16, 3184-3190 (2004).
44. J. Li, X. Wang, Q. Huang, S. Gamboa, and P. J. Sebastian, “A new type of MnO2⋅xH2O/CRF composite electrode for supercapacitors”, J. Power Sources, 160, 1501-1505 (2006).
45. V. Subramanian, H. Zhu, and B. Wei, “Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials”, Electrochem. Commun., 8, 827-832 (2006).
46. S. Devaraj, and N. Munichandraiah, ”Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing”, J. Electrochem. Soc., 154, A80-A88 (2007).
47. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu and L. R. Shiue, “Electrochemical capacitor of magnetite in aqueous electrolytes”, J. Power Sources, 113, 173-178 (2003).
48. S. Y. Wang and N. L. Wu, “Operating characteristics of aqueous magnetite electrochemical capacitors”, J. Appl. Electrochem., 33, 345-348 (2003).
49. T. Brousse and D. Bélanger, “A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte”, Electrochem. Solid-State Lett., 6, A244-A248 (2003).
50. K. W. Chung, K .B. Kim, S. H. Han, and H. Lee, “Novel synthesis and electrochemical characterization of nano-sized cellular Fe3O4 thin film”, Electrochem. Solid-State Lett., 8, A259-A262 (2005).
51. C. Lin, J. A. Ritter, and B. V. Popov, ”Characterization of sol-gel derived cobalt oxide xerogels as electrochemical capacitors”, J. Electrochem. Soc., 145, 4097-4103 (1998).
52. V. Srinivasan and J. W. Weidner, “Capacitance studies of cobalt oxide films formed via electrochemical precipitation”, J. Power Sources, 108, 15-20 (2002).
53. H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, and Y. S. Yoon, “Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors”, J. Power Sources, 102, 167-171 (2001).
54. W. C. Chen and T. C. Wen, “Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors”, J. Power Sources, 117, 273-282 (2003).
55. J. M. Pernaut and G. Goulart, “Electrochemical capacitor using polymer/carbon composites”, J. Power Sources, 55, 93-96 (1995).
56. X. Liu and T. Osaka, “Properties of electric double-layer capacitors with various polymer gel electrolytes”, J. Electrochem. Soc., 144, 3066-3071 (1997).
57. T. Osaka, X. Liu, and M. Nojima, “Acetylene black/poly(vinylidene fluoride) gel electrolyte composite electrode for an electric double-layer capacitor”, J. Power Sources, 74, 122-128 (1998).
58. J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis, E. Devlin, and A. Kostikas, “Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation”, Phys. Rev. B, 54, 9288-9296 (1966)
59. V. M. Bujoreanu, L. Diamandescu, and M. Brezeanu, “On the structure of manganse ferrite powder prepared by coprecipitation from MnO2 and FeSO4.7H2O”, Mater. Lett., 46, 169-174 (2000)
60. R. D. K. Misra, S. Gubbala, A. Kale, and W. F. Egelhoff Jr., “A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique”, Mater. Sci. Eng. B, 111, 164-174 (2004)
61. E. E. Carpenter, C. J. O’Connor, and V. G. Harris, “Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis”, J. Appl. Phys., 85,5175-5177 (1999)
62. S. Komarneni, M. C. D’Arrigo, C. Leonelli, G. C. Pellacani, and H. Katsuki, “Microwave-hydrothermal synthesis of nanophase ferrites”, J. Am. Cera. Soc., 81, 3041-3043 (1998)
63. E. Kang, J. Park, Y. Hwang, M. Kang, J. G. Park, and T. Hyeon, “Direct synthesis of highly crystalline and monodisperse manganese ferrute nanocrystals“, J. Phys. Chem. B, 108, 13932-13935 (2004)
64. M. H. Mahmoud, H. H. Hamdeh, A. I. Abdel-Mageed, A. M. Abdallah, and M. K. Fayek, “Effect of HEBM on the cation distribution of Mn-ferrite”, Physica B, 291, 49-53 (2000)
65. V. G. Harris, D. J. Fatemi, J. O. Cross, E. E. Carpenter, V. M. Browning, J. P. Kirkland, A. Mohan, and G. J. Long, “One-step processing of spinel ferrites via the high-energy ball milling of binary oxides”, J. Appl. Phys., 94, 496-501 (2003)
66. Y. Q. Chu, Z. W. Fu, and Q. Z. Qin, “Cobalt ferrite thin films as anode material for lithium ion batteries“, Electrochim. Acta, 49, 4915-4921 (2004)
67. R. Alcantara, M. Jaraba, P. Lavela, J. L. Tirado, J. C. Jumas, and J. Olivier-Fourcade, “Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4”, Electrochem. Commin., 5, 16-21 (2003)
68. Y. N. NuLi, Y. Q. Chu, and Q. Z. Qin, “Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries”, J. electrochem. Soc., 151, A1077-A1083 (2004)
69. S. L. Kuo and N. L. Wu, “Electrochemical Capacitor of MnFe2O4 with NaCl Electrolyte”, Electrochem. Solid-State Lett., 8, A495-A499 (2005)
70. S. B. Ma, K. W. Nam, W. S. Yoon, X. Q. Yang, K. Y. Ahn, K. H. Oh and K. B. Kim, “A novel concept of hybrid capacitor based on manganese oxide materials”, Electrochem. Commun., 9, 2807–2811 (2007)
71. T. Brousse, M. Toupin, and D. Be´langer, “A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte”, J. Electrochem. Soc., 151, A614-A622 (2004)
72. G. G. Amatucci, F. Badway, A. D. Pasquier, and T. Zheng, “An Asymmetric Hybrid Nonaqueous Energy Storage Cell”, J. Electrochem. Soc., 148, A930-A939 (2001)
73. M. S. Hong, S. H. Lee, and S. W. Kim, “Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor”, Electrochem. Solid-State Lett., 5, A227-A230 (2002)
74. Y. M. Lin, H. C. Wu, Y. C. Yen, Z. Z. Guo, M. H. Yang, H. M. Chen, H. S. Sheu, and N. L. Wu, “Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery”, J. Electrochem. Soc., 152, A1526-A1532 (2005)
75. D. C. Koningsberger and R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, in Chemical Analysis, John Wiley & Sons, (1988).
76. E. A. Stern and S. M. Heald, E. E. Koch, Basic Principles and Applications of EXAFS in Handbook of Synchrotron Radiation, North-Holland, 995–1014 (1983)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37437-
dc.description.abstract摘要
藉由計時電位法、循環伏安法和X光吸收光譜,研究分析了錳鐵氧超高電容器在有機電解質中的電化學性質。結晶相的錳鐵氧與碳黑的複合電極在LiPF6有機溶液中可表現出具有120 F/g-MnFe2O4的比電容量。同時,此電容器可以穩定操作在電壓範圍為1.8 V 到 4.2 V(相較於Li/Li+)之間。當工作電壓低於1.8 V時,電容量的衰退速率將會快速增加。從X光吸收光譜的分析來看,衰退機制可能可以歸因於錳鐵氧材料內不可逆的電子結構變化。
在論文的後續部份,分析了一種利用鋰錳氧和錳鐵氧為電極材料的新式混合超高電容器在有機電解質中的特性。結果顯示此系統可表現出良好的電容特性。並且藉由與電池型電極的搭配,使得相較於傳統對稱式電容器,不論在比電容量或是自放電速率皆獲得大幅改善。這樣的混合系統將有助於開發實際應用。
zh_TW
dc.description.abstractAbstract
Electrochemical properties of MnFe2O4 pseudocapacitors in organic electrolytes have been studied via chronopotentiometry, X-ray absorption spectroscopy (XANES) and cyclic voltammetry analysis. Crystalline MnFe2O4 and carbon black composite electrode shows a specific capacitance at least 120 F/g- MnFe2O4 in LiPF6 organic solution. And the capacitor can be safely operated in a potential window between 1.8 V and 4.2 V (vs. Li/Li+). As the working voltage is lower than 1.8 V, the fading rate of the capacitance will rapidly increase. From XANES analysis, the fading mechanism may attribute to the irreversible electronic configuration changes in the ferrite material.
At the follow-up part of the thesis, a new hybrid surpercapacitor using LiMn2O4 and MnFe2O4 as the electrode materials in the organic electrolytes is also studied. The results show that this system exhibits good capacitor behavior. By matching with the battery-type electrode, the specific capacitance and self-discharge rate are both improved a lot than symmetric capacitor system. This hybrid system is helpful for developing the practical application.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:28:07Z (GMT). No. of bitstreams: 1
ntu-97-R95524024-1.pdf: 4751355 bytes, checksum: cba6473fe83cffd5e539ba534b77063b (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of contents
摘要 I
Abstract II
Table of contents III
List of Figures V
List of Tables VIII
Chapter 1 Introduction 1
Chapter 2 Theory and Literature Review 3
2.1 Introduction to Electrochemical Capacitors 3
2.1.1 Introduction to Energy Storage Systems 3
2.1.2 Classification of Electrochemical Capacitors 7
2.1.3 Characteristic Analysis of Electrochemical Capacitors 10
2.1.4 Self-discharge Mechanism of Electrochemical Capacitors 12
2.2 Development of Electrochemical Capacitors 14
2.2.1 Electrode materials 14
2.2.2 Electrolytes 16
2.3 Introduction to Manganese ferrite, MnFe2O4 18
2.4 Introduction to Hybrid Capacitors 21
2.4.1 Hybrid capacitors 21
2.4.2 Application of LiMn2O4 in hybrid capacitors 22
2.5 Experimental Techniques: X-ray Absorption Spectroscopy 23
Chapter 3 Experimental 30
3.1 Synthesis of Eletrode Materials 30
3.2 Analysis and Characterization 33
3.2.1 Microstructure 33
3.2.2 Phase Identification 33
3.2.3 Measurement of X-ray Absorption Spectroscopy 34
3.3 Electrochemical Characteriztions 36
3.3.1 Preparation of Electrodes 36
3.3.2 Preparation of Supercapactor cells 36
3.3.3 Cyclic Voltammetry 37
3.3.4 Chronopotentiometry 38
3.3.5 Self-Discharge Characterization 38
Chapter 4 Investigation on MnFe2O4 supercapacitor in organic electrolytes 40
4.1 Introduction 40
4.2 Basic Characterization of MnFe2O4/Carbon Black Organic Supercapacitor 42
4.3 Investigation on the stability of MnFe2O4/Carbon Black Organic Supercapacitor 51
4.4 Investigation on Symmetric cell of MnFe2O4 Organic Supercapacitor 56
4.5 Development of LiMn2O4/MnFe2O4 Hybrid Electrochemical Supercapacitor 58
4.6 Optimization of LiMn2O4/MnFe2O4 Hybrid Electrochemical Supercapacitor 65
Chapter 5 Conclusions 71
References 72
dc.language.isoen
dc.title錳鐵氧化物有機超高電容器之製備與分析zh_TW
dc.titleSynthesis and Characterization of Organic MnFe2O4 Supercapacitorsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳弘俊,楊模樺
dc.subject.keyword超高電容器,錳鐵氧,鋰錳氧,有機系,混合,zh_TW
dc.subject.keywordsupercapacitor,MnFe2O4,LiMn2O4,organic,hybrid,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2008-07-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved