Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3742
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡忠怡(Chung-Yi Hu)
dc.contributor.authorChia-Wei Chenen
dc.contributor.author陳佳瑋zh_TW
dc.date.accessioned2021-05-13T08:36:22Z-
dc.date.available2019-08-26
dc.date.available2021-05-13T08:36:22Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-13
dc.identifier.citation1 Pui, C. H. & Evans, W. E. Treatment of acute lymphoblastic leukemia. The New England journal of medicine 354, 166-178, doi:10.1056/NEJMra052603 (2006).
2 Pui, C. H., Relling, M. V. & Downing, J. R. Acute lymphoblastic leukemia. The New England journal of medicine 350, 1535-1548, doi:10.1056/NEJMra023001 (2004).
3 Pui, C. H., Robison, L. L. & Look, A. T. Acute lymphoblastic leukaemia. Lancet (London, England) 371, 1030-1043, doi:10.1016/s0140-6736(08)60457-2 (2008).
4 Lo Nigro, L. Biology of childhood acute lymphoblastic leukemia. Journal of pediatric hematology/oncology 35, 245-252, doi:10.1097/MPH.0b013e31828f8746 (2013).
5 中華民國兒童癌症基金會. 兒童白血病. (2007).
6 長庚紀念醫院. 認識成人急性白血病 (Acute Leukemia ) (長庚紀念醫院衛教手冊).
7 Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA: a cancer journal for clinicians 62, 10-29, doi:10.3322/caac.20138 (2012).
8 衛生福利部國民健康署. 中華民國102年癌症登記報告. (2016).
9 Faderl, S., O'Brien, S., Pui, C. H., Stock, W., Wetzler, M., Hoelzer, D. & Kantarjian, H. M. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer 116, 1165-1176, doi:10.1002/cncr.24862 (2010).
10 Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. Lancet (London, England) 381, 1943-1955,doi:10.1016/s0140-6736(12)62187-4 (2013).
11 Harvey, R. C., Mullighan, C. G., Chen, I. M., Wharton, W., Mikhail, F. M., Carroll, A. J., Kang, H., Liu, W., Dobbin, K. K., Smith, M. A., Carroll, W. L., Devidas, M., Bowman, W. P., Camitta, B. M., Reaman, G. H., Hunger, S. P., Downing, J. R. & Willman, C. L. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115, 5312-5321, doi:10.1182/blood-2009-09-245944 (2010).
12 Pui, C. H. & Jeha, S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nature reviews. Drug discovery 6, 149-165, doi:10.1038/nrd2240 (2007).
13 Lindsey, R. H., Jr., Bender, R. P. & Osheroff, N. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chemical research in toxicology 18, 761-770, doi:10.1021/tx049659z (2005).
14 Regev, L., Wu, M., Zlotolow, R. & Brautbar, N. Hydroquinone, a benzene metabolite, and leukemia: a case report and review of the literature. Toxicology and industrial health 28, 64-73, doi:10.1177/0748233711404037 (2012).
15 Siew, E. L., Chan, K. M., Williams, G. T., Ross, D. & Inayat-Hussain, S. H. Protection of hydroquinone-induced apoptosis by downregulation of Fau is mediated by NQO1. Free radical biology & medicine 53, 1616-1624, doi:10.1016/j.freeradbiomed.2012.05.046 (2012).
16 Inayat-Hussain, S. H. & Ross, D. Intrinsic pathway of hydroquinone induced apoptosis occurs via both caspase-dependent and caspase-independent mechanisms. Chemical research in toxicology 18, 420-427,doi:10.1021/tx049762o (2005).
17 Wu, P. L., Lin, S. B., Huang, C. P. & Chiou, R. Y. Antioxidative and cytotoxic compounds extracted from the sap of Rhus succedanea. Journal of natural products 65, 1719-1721 (2002).
18 Huang, C. P., Fang, W. H., Lin, L. I., Chiou, R. Y., Kan, L. S., Chi, N. H., Chen, Y. R., Lin, T. Y. & Lin, S. B. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning. Toxicology and applied pharmacology 227, 331-338, doi:10.1016/j.taap.2007.11.014 (2008).
19 Lin, T. Y., Huang, C. P., Au, L. C., Chang, Y. W., Hu, C. Y. & Lin, S. B. A cysteine-reactive alkyl hydroquinone modifies topoisomerase IIalpha, enhances DNA breakage, and induces apoptosis in cancer cells. Chemical research in toxicology 25, 2340-2351, doi:10.1021/tx3002302 (2012).
20 張耀仁. Master Thesis : Inhibitory effects of the botanical alkyl hydroquinone derivative HQ17(3) on acute lymphoblastic leukemia SUP-B15 cells harboring Philadelphia chromosome. (2013).
21 高意雯. Master Thesis : The effects of the botanical alkyl hydroquinone derivative HQ17(3) on acute lymphoblastic leukemia cell lines, RS(4;11) harboring t(4;11) chromosome translocation. (2011).
22 Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nunez, G., Peter, M. E., Piacentini, M., Rubinsztein, D. C., Shi, Y., Simon, H. U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G. & Kroemer, G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell death and differentiation 19, 107-120, doi:10.1038/cdd.2011.96 (2012).
23 Elmore, S. Apoptosis: a review of programmed cell death. Toxicologic pathology 35, 495-516, doi:10.1080/01926230701320337 (2007).
24 Chaitanya, G. V., Steven, A. J. & Babu, P. P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell communication and signaling : CCS 8, 31, doi:10.1186/1478-811x-8-31 (2010).
25 Galluzzi, L., Bravo-San Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Alnemri, E. S., Altucci, L., Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E. H., Bazan, N. G., Bertrand, M. J., Bianchi, K., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Campanella, M., Candi, E., Cecconi, F., Chan, F. K., Chandel, N. S., Cheng, E. H., Chipuk, J. E., Cidlowski, J. A., Ciechanover, A., Dawson, T. M., Dawson, V. L., De Laurenzi, V., De Maria, R., Debatin, K. M., Di Daniele, N., Dixit, V. M., Dynlacht, B. D., El-Deiry, W. S., Fimia, G. M., Flavell, R. A., Fulda, S., Garrido, C., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Joseph, B., Jost, P. J., Kaufmann, T., Kepp, O., Klionsky, D. J., Knight, R. A., Kumar, S., Lemasters, J. J., Levine, B., Linkermann, A., Lipton, S. A., Lockshin, R. A., Lopez-Otin, C., Lugli, E., Madeo, F., Malorni, W., Marine, J. C., Martin, S. J., Martinou, J. C., Medema, J. P., Meier, P., Melino, S., Mizushima, N., Moll, U., Munoz-Pinedo, C., Nunez, G., Oberst, A., Panaretakis, T., Penninger, J. M., Peter, M. E., Piacentini, M., Pinton, P., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Ravichandran, K. S., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Shi, Y., Simon, H. U., Stockwell, B. R., Szabadkai, G., Tait, S. W., Tang, H. L., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E. F., Walczak, H., White, E., Wood, W. G., Yuan, J., Zakeri, Z., Zhivotovsky, B., Melino, G. & Kroemer, G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell death and differentiation 22, 58-73, doi:10.1038/cdd.2014.137 (2015). 26 Lynne Cassimeris, G. P., Vishwanath R. Lingappa Lewin's CELLS 2nd Edition.
27 Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A. S., Fernandes-Alnemri, T. & Alnemri, E. S. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. The Journal of biological chemistry 277, 432-438, doi:10.1074/jbc.M109721200 (2002).
28 Broker, L. E., Kruyt, F. A. & Giaccone, G. Cell death independent of caspases: a review. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 3155-3162, doi:10.1158/1078-0432.ccr-04-2223 (2005).
29 Kroemer, G. & Martin, S. J. Caspase-independent cell death. Nature medicine 11, 725-730, doi:10.1038/nm1263 (2005).
30 Norberg, E., Orrenius, S. & Zhivotovsky, B. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochemical and biophysical research communications 396, 95-100, doi:10.1016/j.bbrc.2010.02.163 (2010).
31 Yuste, V. J., Moubarak, R. S., Delettre, C., Bras, M., Sancho, P., Robert, N., d'Alayer, J. & Susin, S. A. Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell death and differentiation 12, 1445-1448, doi:10.1038/sj.cdd.4401687 (2005).
32 Badugu, R., Garcia, M., Bondada, V., Joshi, A. & Geddes, J. W. N terminus of calpain 1 is a mitochondrial targeting sequence. The Journal of biological chemistry 283, 3409-3417, doi:10.1074/jbc.M706851200 (2008).
33 Norberg, E., Gogvadze, V., Ott, M., Horn, M., Uhlen, P., Orrenius, S. & Zhivotovsky, B. An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell death and differentiation 15, 1857-1864, doi:10.1038/cdd.2008.123 (2008).
34 Norberg, E., Gogvadze, V., Vakifahmetoglu, H., Orrenius, S. & Zhivotovsky, B. Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free radical biology & medicine 48, 791-797, doi:10.1016/j.freeradbiomed.2009.12.020 (2010).
35 Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. & Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature chemical biology 1, 112-119, doi:10.1038/nchembio711 (2005). 36 Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature reviews. Molecular cell biology 11, 700-714, doi:10.1038/nrm2970 (2010).
37 Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J. & Yuan, J. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311-1323, doi:10.1016/j.cell.2008.10.044 (2008).
38 Kreuzaler, P. & Watson, C. J. Killing a cancer: what are the alternatives? Nature reviews. Cancer 12, 411-424, doi:10.1038/nrc3264 (2012).
39 Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434-6451, doi:10.1038/onc.2008.310 (2008).
40 Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nature reviews. Cancer 5, 886-897, doi:10.1038/nrc1738 (2005).
41 Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27-42, doi:10.1016/j.cell.2007.12.018 (2008).
42 Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature reviews. Molecular cell biology 8, 741-752, doi:10.1038/nrm2239 (2007).
43 Gerondakis, S., Fulford, T. S., Messina, N. L. & Grumont, R. J. NF-kappaB control of T cell development. Nature immunology 15, 15-25, doi:10.1038/ni.2785 (2014).
44 Gilmore, T. D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684, doi:10.1038/sj.onc.1209954 (2006).
45 Hoffmann, A., Natoli, G. & Ghosh, G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 25, 6706-6716, doi:10.1038/sj.onc.1209933 (2006).
46 Flamment, M., Hajduch, E., Ferre, P. & Foufelle, F. New insights into ER stress-induced insulin resistance. Trends in endocrinology and metabolism: TEM 23, 381-390, doi:10.1016/j.tem.2012.06.003 (2012).
47 Hoyer-Hansen, M. & Jaattela, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell death and differentiation 14, 1576-1582, doi:10.1038/sj.cdd.4402200 (2007).
48 Kharabi Masouleh, B., Chevet, E., Panse, J., Jost, E., O'Dwyer, M., Bruemmendorf, T. H. & Samali, A. Drugging the unfolded protein response in acute leukemias. Journal of hematology & oncology 8, 87,doi:10.1186/s13045-015-0184-7 (2015).
49 Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. Biochimica et biophysica acta 1833, 3460-3470, doi:10.1016/j.bbamcr.2013.06.028 (2013).
50 Uemura, A., Oku, M., Mori, K. & Yoshida, H. Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response. Journal of cell science 122, 2877-2886, doi:10.1242/jcs.040584 (2009). 51 Kawamata, H. & Manfredi, G. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mechanisms of ageing and development 131, 517-526, doi:10.1016/j.mad.2010.05.003 (2010).
52 Li, G., Mongillo, M., Chin, K. T., Harding, H., Ron, D., Marks, A. R. & Tabas, I. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. The Journal of cell biology 186, 783-792, doi:10.1083/jcb.200904060 (2009).
53 Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS biology 4, e423, doi:10.1371/journal.pbio.0040423 (2006).
54 Hoyer-Hansen, M., Bastholm, L., Szyniarowski, P., Campanella, M., Szabadkai, G., Farkas, T., Bianchi, K., Fehrenbacher, N., Elling, F., Rizzuto, R., Mathiasen, I. S. & Jaattela, M. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Molecular cell 25, 193-205, doi:10.1016/j.molcel.2006.12.009 (2007).
55 Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J. A., Urano, F. & Imaizumi, K. Autophagy is activated for cell survival after endoplasmic reticulum stress. Molecular and cellular biology 26, 9220-9231, doi:10.1128/mcb.01453-06 (2006).
56 Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D. & Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939, doi:10.1016/j.cell.2005.07.002 (2005).
57 Sakaki, K. & Kaufman, R. J. Regulation of ER stress-induced macroautophagy by protein kinase C. Autophagy 4, 841-843 (2008).
58 Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R. J., Kominami, E. & Momoi, T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell death and differentiation 14, 230-239, doi:10.1038/sj.cdd.4401984 (2007).
59 Margariti, A., Li, H., Chen, T., Martin, D., Vizcay-Barrena, G., Alam, S., Karamariti, E., Xiao, Q., Zampetaki, A., Zhang, Z., Wang, W., Jiang, Z., Gao, C., Ma, B., Chen, Y. G., Cockerill, G., Hu, Y., Xu, Q. & Zeng, L. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. The Journal of biological chemistry 288, 859-872, doi:10.1074/jbc.M112.412783 (2013).
60 Yang, T. T., Sinai, P. & Kain, S. R. An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells. Analytical biochemistry 241, 103-108, doi:10.1006/abio.1996.0383 (1996).
61 Mimura, N., Fulciniti, M., Gorgun, G., Tai, Y. T., Cirstea, D., Santo, L., Hu, Y., Fabre, C., Minami, J., Ohguchi, H., Kiziltepe, T., Ikeda, H., Kawano, Y., French, M., Blumenthal, M., Tam, V., Kertesz, N. L., Malyankar, U. M., Hokenson, M., Pham, T., Zeng, Q., Patterson, J. B., Richardson, P. G., Munshi, N. C. & Anderson, K. C. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119, 5772-5781, doi:10.1182/blood-2011-07-366633 (2012).
62 Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R. & Tashiro, Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell structure and function 23, 33-42 (1998).
63 Xia, T., Wang, J., Wang, Y., Wang, Y., Cai, J., Wang, M., Chen, Q., Song, J., Yu, Z., Huang, W. & Fang, J. Inhibition of autophagy potentiates anticancer property of 20(S)-ginsenoside Rh2 by promoting mitochondria-dependent apoptosis in human acute lymphoblastic leukaemia cells. Oncotarget, doi:10.18632/oncotarget.8285 (2016).
64 Chou, S. D., Prince, T., Gong, J. & Calderwood, S. K. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PloS one 7, e39679, doi:10.1371/journal.pone.0039679 (2012).
65 Fournier, M. J., Coudert, L., Mellaoui, S., Adjibade, P., Gareau, C., Cote, M. F., Sonenberg, N., Gaudreault, R. C. & Mazroui, R. Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Molecular and cellular biology 33, 2285-2301, doi:10.1128/mcb.01517-12 (2013).
66 Concha, C., Monardes, A., Even, Y., Morin, V., Puchi, M., Imschenetzky, M. & Geneviere, A. M. Inhibition of cysteine protease activity disturbs DNA replication and prevents mitosis in the early mitotic cell cycles of sea urchin embryos. Journal of cellular physiology 204, 693-703, doi:10.1002/jcp.20338(2005).
67 Goulet, B., Baruch, A., Moon, N. S., Poirier, M., Sansregret, L. L., Erickson, A., Bogyo, M. & Nepveu, A. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Molecular cell 14, 207-219 (2004).
68 Goulet, B., Sansregret, L., Leduy, L., Bogyo, M., Weber, E., Chauhan, S. S. & Nepveu, A. Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Molecular cancer research : MCR 5, 899-907, doi:10.1158/1541-7786.mcr-07-0160 (2007).
69 Pislar, A., Perisic Nanut, M. & Kos, J. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival. Seminars in cancer biology 35, 168-179, doi:10.1016/j.semcancer.2015.08.001 (2015).
70 Zavasnik-Bergant, T. & Turk, B. Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells. Biological chemistry 388, 1141-1149, doi:10.1515/bc.2007.144 (2007).
71 Benes, P., Vetvicka, V. & Fusek, M. Cathepsin D--many functions of one aspartic protease. Critical reviews in oncology/hematology 68, 12-28, doi:10.1016/j.critrevonc.2008.02.008 (2008).
72 Zalckvar, E., Berissi, H., Eisenstein, M. & Kimchi, A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720-722 (2009).
73 Khan, M. T. & Joseph, S. K. Role of inositol trisphosphate receptors in autophagy in DT40 cells. The Journal of biological chemistry 285, 16912-16920, doi:10.1074/jbc.M110.114207 (2010).
74 Gulati, P., Gaspers, L. D., Dann, S. G., Joaquin, M., Nobukuni, T., Natt, F., Kozma, S. C., Thomas, A. P. & Thomas, G. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell metabolism 7, 456-465, doi:10.1016/j.cmet.2008.03.002 (2008).
75 Hansford, R. G. Dehydrogenase activation by Ca2+ in cells and tissues. Journal of bioenergetics and biomembranes 23, 823-854 (1991).
76 Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A. & Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proceedings of the National Academy of Sciences of the United States of America 96, 13807-13812 (1999).
77 Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T. & Snyder, S. H. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nature cell biology 5, 1051-1061, doi:10.1038/ncb1063 (2003).
78 Kharabi Masouleh, B., Geng, H., Hurtz, C., Chan, L. N., Logan, A. C., Chang, M. S., Huang, C., Swaminathan, S., Sun, H., Paietta, E., Melnick, A. M., Koeffler, P. & Muschen, M. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America 111, E2219-2228, doi:10.1073/pnas.1400958111 (2014). 79 Tanimura, A., Yujiri, T., Tanaka, Y., Hatanaka, M., Mitani, N., Nakamura, Y., Mori, K. & Tanizawa, Y. The anti-apoptotic role of the unfolded protein response in Bcr-Abl-positive leukemia cells. Leukemia research 33, 924-928, doi:10.1016/j.leukres.2009.01.027 (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3742-
dc.description.abstract好發於兒童的急性淋巴性白血病(acute lymphoblastic leukemia, ALL)為不成熟的B淋巴球和T淋巴球異常增生的一種血液癌症,造成ALL的原因有proto-oncogene不正常表現、染色體轉位(chromosome translocation)或多倍體(hyperdiploidy)等導致造血幹細胞(hematopoietic stem cell, HSC)或血液前驅細胞(hematopoietic progenitor cells, HPC)之異常增生、抗凋亡以及自我更新的能力。高危險群(high risk)的t(9;22) BCR-ABL+ precursor B-A LL在兒童ALL發生率約有3%,但在成人ALL卻超過25%,雖然在治療上採取最高劑量化療搭配tyrosine kinase inhibitors (如:Imatinib, IM),但其預後仍差;而對第一線抗血癌藥物(如:glucocorticoid, Dexamethasone)的抗性是在T-ALL治療上常碰到的問題。因此,有必要針對這些高危險群(high risk)的ALL發展出新的治療策略。小分子10’(Z),13’(E),15’(E)-heptadecatrienylhydroquinone (HQ17(3))萃取自台灣漆樹(Rhus succedanea)的漆液,先前研究指出對於多種癌細胞具有選擇性毒性,但對周邊血液白血球則無明顯毒性,已知HQ17(3)能抑制DNA拓樸異構酶(DNA topoisomerase II)活性,在Huh7肝癌細胞中可造成氧化壓力引起細胞凋亡。 用低濃度(M)的HQ17(3)處理SUP-B15 (IM-refractory BCR-ABL+ B- A LL)或Jurkat (Dexamethasone-resistant T-ALL)細胞24小時即有顯著毒殺效果,HQ17(3)也會導致粒線體膜電位喪失並在Jurkat及SUP-B15細胞分別造成caspase-dependent,caspase- independent的細胞死亡。用低於IC50濃度的HQ17(3)能增加SUP-B15細胞對IM的敏感度,也能增加Dexamethasone對Jurkat細胞的抑制效果。
在SUP-B15細胞中,HQ17(3)引起細胞死亡之前有顯著的酸性胞器生成,顯示溶小體膜通透(lysosomal membrane permeabilization, LMP)或細胞自噬(autophagy)可能與細胞死亡相關。使用多種lysosome中cathepsins的抑制劑皆不能挽救HQ17(3)導致的死亡,說明與LMP相關的cathepsins溢出並非HQ17(3)導致細胞死亡的原因。HQ17(3)能造成外源性的EGFP-LC3融合蛋白的聚集,代表HQ17(3)能促使細胞產生autophagy。使用autophagy的抑制劑(Bafilomycin A1)以及利用shRNA抑制Beclin1 (autophagy發生的必要蛋白)的表現皆能降低HQ17(3)造成的死亡,autophagy誘導劑(Rapamycin)也可以減少HQ17(3)引起之細胞死亡。因此,HQ17(3)造成的死亡與autophagy相關。我們發現HQ17(3)在SUP-B15細胞迅速引起mTOR和NF-B的活化,顯示細胞遭受壓力。HQ17(3)造成內質網壓力進而導致eIF2磷酸化和ER chaperone-Grp78表現量的增加。推測HQ17(3)引起內質網壓力進而導致細胞發生autophagy和死亡。 本研究結果顯示HQ17(3)對高復發風險ALL細胞具有毒殺效果,且第一線用藥與HQ17(3)合併使用能增強對ALL細胞株的抑制作用,除了在Jurkat細胞引起典型的細胞凋亡,我們也發現HQ17(3)能對SUP-B15細胞造成內質網壓力和autophagy,而內質網壓力是否與HQ17(3)導致的autophagy和細胞死亡有關還需進一步探討。
zh_TW
dc.description.abstractAcute lymphoblastic leukemia (ALL), the most common cancer in childhood, is a neoplasm with uncontrolled proliferation of immature B- or T-lymphoid cells in hematopoietic system. Aberrant expression of proto-oncogene, chromosome translocation or hyperdiploidy make hematopoietic stem cell (HSC) or progenitor cells obtain ability of uncontrolled proliferation, anti-apoptosis and self-renewal and result in ALL development. High risk (HR) precursor B-ALL with t(9;22) BCR-ABL composed of 3% of childhood ALL and more than 25% of the adult ALL. It’s characterized by dismal clinical outcome, even treated with the highest dose chemotherapy combined with tyrosine kinase inhibitors (e.g. Imatinib, IM). Resistant to first-line drugs (e.g. glucocorticoid, Dexamethasone) is a common problem encountered in T-ALL treatment. Developing new therapeutic strategies for high risk ALL is necessary. The small natural molecule 10’(Z),13’(E),15’(E)- heptadecatrienyl hydroquinone (HQ17(3)) is extracted from the sap of the lacquer tree Rhus succedanea. HQ17(3) exerted selective cytotoxicity in various types of cancer cells, but did not reduce the viability of normal peripheral blood leukocytes. Introduction of HQ17(3) resulted in DNA topoisomerase II inhibition and oxidative stress production in Huh7 cell lines.
We found HQ17(3) had significant cytotoxic effect within 24 hours at micromolar concentration on HR SUP-B15 (IM-refractory BCR-ABL+ B-ALL) and Jurkat (Dexamethasone-resistant T-ALL) cell lines. HQ17(3) lead to loss of mitochondria membrane potential and caspase-dependent cell death in Jurkat cells. HQ17(3) induced caspase-independent cell death in SUP-B15 cells. Combination of sub-IC50 concentration of HQ17(3) sensitize SUP-B15 cells to Imatinib, and enhance the inhibitory effect of Dexamethasone on Jurkat cells. In SUP-B15 cells, HQ17(3) induced formation of acidic vesicles prior to cell death. The cause of HQ17(3)-induced cell death could not be attributed to cathepsins from lysosomal membrane permeabilization (LMP) because cathepsin inhibitors did not attenuate the cell death. HQ17(3) induced autophagy characterized by aggregation of ectopically expressed EGFP-LC3. Inhibition of autophagy by Bafilomycin A1 or knockdown the essential autophagy-related protein Beclin1 by shRNA could partially attenuate HQ17(3)-induced cell death. Autophagy induced by rapamycin also reduced the cytotoxic effect of HQ17(3). HQ17(3)-induced autophagy may be implicated cell death. Further, HQ17(3) treatment gave rise to early mTOR and NF-B activation, indicating induction of cell stress. HQ17(3) also induce ER stress as revealed by enhancement of eIF2 phosphorylation and up-regulation of ER chaperone Grp78. We speculate HQ17(3) may lead to ER stress and then result in autophagy and cell death. In summary, HQ17(3) is highly cytotoxic to high risk ALL cell lines (SUP-B15 and Jurkat), and combination of HQ17(3) with the first-line anti-leukemia drugs enhance the inhibitory effect on ALL cells. HQ17(3) also induced ER stress and autophagy in SUP-B15. Whether ER stress is essential for HQ17(3)-induced autophagy and cell death in BCR-ABL+ B-ALL cells await further investigation.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:36:22Z (GMT). No. of bitstreams: 1
ntu-105-R03424028-1.pdf: 4084579 bytes, checksum: f06bdca8722aa73d3be776fd27773f0c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 ............................................................................................................................... I
中文摘要 .......................................................................................................................... II
Abstract ........................................................................................................................... IV
縮寫表 ............................................................................................................................ VI
第一章 緒論 ..................................................................................................................... 1
一、 急性淋巴性白血病 ........................................................................................ 1
1、 急性淋巴性白血病的症狀 ........................................................................ 1
2、 急性淋巴性白血病的診斷 ........................................................................ 2
3、 急性淋巴性白血病的治療(risk-directed combined chemotherapies) ....... 3
4、 急性淋巴性白血病的不良預後因子 ........................................................ 4
二、 對苯二酚衍生物HQ17(3)簡介 ..................................................................... 5
1、 對苯二酚誘發caspase-dependent及caspase-independent細胞死亡模式 .................................................................................................................... 5
2、 對苯二酚衍生物HQ17(3) 相關文獻探討 ............................................... 6
三、 計畫性細胞死亡(Programmed cell death)..................................................... 7
1、 細胞凋亡(Apoptosis, type I cell death) ...................................................... 7
2、 細胞壞死(Necroptosis, type III cell death) .............................................. 11
3、 Lysosomal membrane permeabilization (LMP) ....................................... 11
4、 細胞自噬(Autophagy, Type II cell death) ................................................ 12
四、 Nuclear factor-kappa B (NF-κB) signaling pathway .................................... 14
五、 Unfolded protein response (UPR)-內質網壓力(ER stress) ......................... 15
六、 Preliminary data ............................................................................................ 17
第二章 研究目的與實驗設計 ....................................................................................... 18
一、 研究目的 ...................................................................................................... 18
1、 研究動機 .................................................................................................. 18
2、 研究目的 .................................................................................................. 19
二、 實驗設計 ...................................................................................................... 19
第三章 材料與方法 ....................................................................................................... 21
一、 實驗材料 ...................................................................................................... 21
1、 細胞株 ...................................................................................................... 21
2、 試藥/劑、抗體、儀器、耗材清單 ......................................................... 21
3、 各式溶液及其配方 .................................................................................. 27
(1) 細胞培養、繼代 .............................................................................. 27
(2) 流式細胞儀相關實驗 ...................................................................... 28
(3) 萃取細胞蛋白質 .............................................................................. 28
(4) 鈉十二烷基硫酸鹽聚丙烯胺凝膠電泳與膠體轉漬 ...................... 29
(5) 西方墨點法 ...................................................................................... 30
(6) 細胞存活/活性分析-Acid phosphatase assay (ACP assay) ............. 32
(7) 免疫螢光染色 .................................................................................. 32
二、 實驗方法 ...................................................................................................... 32
1、 解凍細胞、細胞培養及細胞計數 .......................................................... 32
2、 細胞存活分析 .......................................................................................... 33
(1) Acid phosphatase (ACP) assay ......................................................... 33
(2) 細胞膜磷脂質phosphatidylserine (PS)外翻與細胞膜完整性分析(Annexin V/PI) .................................................................................. 33
(3) 細胞粒線體膜電位的測定(DiOC6(3)染色) .................................... 34
3、 Autophagy的偵測 .................................................................................... 34
4、 Knockdown of Beclin1 ............................................................................. 35
5、 免疫螢光染色 .......................................................................................... 36
6、 RNA萃取與定量反轉錄聚合酶連鎖反應(qRT-PCR) ........................... 36
(1) RNA萃取 ......................................................................................... 36
(2) Quantitative reverse transcription polymerase chain reaction (qRT-PCR) ........................................................................................ 37
7、 西方墨點法 .............................................................................................. 37
(1) 蛋白質的萃取 .................................................................................. 37
(2) 蛋白質定量與電泳樣品準備 .......................................................... 38
(3) 鈉十二烷基硫酸鹽聚丙烯胺凝膠電泳與膠體轉漬 ...................... 38
(4) 阻斷非特異性結合與免疫染色 ...................................................... 39
8、 核質分離 .................................................................................................. 39
9、 X-box binding protein 1 (XBP1) mRNA splicing偵測 ........................... 40
第四章 結果 ................................................................................................................... 41
一、 HQ17(3)對ALL細胞株的毒殺能力 .......................................................... 41
1、 HQ17(3)對ALL細胞株具有毒性 .......................................................... 41
2、 HQ17(3)使T-ALL細胞株Jurkat細胞出現細胞凋亡特徵 ................... 41
(1) HQ17(3)促使Jurkat細胞膜PS外翻、細胞膜受損 ...................... 41
(2) HQ17(3)促使Jurkat細胞的粒線體膜電位喪失 ............................ 42
(3) HQ17(3)對Jurkat細胞引起caspase-dependent cell death ............. 42
二、 HQ17(3)與第一線淋巴性白血病藥物合併使用可增加對ALL細胞的抑制效果 ........................................................................................................ 43
1、 ALL細胞株對化療藥物有抗性 .............................................................. 43
(1) SUP-B15細胞對Imatinib有抗性 ................................................... 43
(2) Jurkat細胞對Dexamethasone有抗性 ............................................ 43
2、 第一線淋巴性白血病藥物與HQ17(3)合併使用可增加對ALL細胞的抑制效果 .................................................................................................. 44
(1) IM與HQ17(3)合併處理能增強對SUP-B15細胞的抑制效果 .... 44
(2) Dex與HQ17(3)合併處理能增強對Jurkat細胞的抑制效果 ........ 44
三、 HQ17(3)誘使SUP-15細胞死亡的effector ................................................ 44
1、 Lysosome中的proteases不是HQ17(3)在SUP-B15細胞中引起死亡的effector ..................................................................................................... 45
2、 HQ17(3)引起Autophagy ......................................................................... 45
3、 Autophagy參與HQ17(3)引起的細胞死亡 ............................................ 46
四、 HQ17(3)造成細胞壓力 ................................................................................ 47
五、 HQ17(3)造成內質網壓力(ER stess)............................................................ 48
六、 HQ17(3)造成DNA斷裂可能由Apoptosis-inducing factor (AIF)造成 .... 48
第五章 討論 ................................................................................................................... 50
圖與表 ............................................................................................................................. 68
附錄 ............................................................................................................................ 85
dc.language.isozh-TW
dc.title分析植物對苯二酚衍生物HQ17(3)對急性淋巴性白血病細胞株的抑制作用zh_TW
dc.titleInhibitory Effects of The Botanical Alkyl Hydroquinone Derivative HQ17(3) on Acute Lymphoblastic Leukemia Cell Linesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林亮音,歐大諒,郭遠燁
dc.subject.keyword急性淋巴性白血病,細胞自噬,HQ17(3),內質網壓力,zh_TW
dc.subject.keywordALL,autophagy,HQ17(3),ER stress,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201602460
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf3.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved