Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37422
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉
dc.contributor.authorChung-Yi Leeen
dc.contributor.author李仲毅zh_TW
dc.date.accessioned2021-06-13T15:27:37Z-
dc.date.available2008-07-21
dc.date.copyright2008-07-21
dc.date.issued2008
dc.date.submitted2008-07-17
dc.identifier.citation1. Moeller MP. Early intervention and language development in children who are deaf and hard of hearing. Pediatrics 2000;106:E43.
2. Downs MP, Yoshinaga-Itano C. The efficacy of early identification and intervention for children with hearing impairment. Pediatr Clin North Am 1999;46:79-87.
3. Yoshinaga-Itano C, Sedey AL, Coulter DK, et al. Language of early- and later-identified children with hearing loss. Pediatrics 1998;102:1161-71.
4. American Speech-Language-Hearing Association. Guidelines for the audiologic assessment of children from birth to 5 years of age. 2004. Available from http://www.asha.org/members/deskref-journals/deskref/default
5. Sininger YS. Audiologic assessment in infants. Curr Opin Otolaryngol Head Neck Surg 2003;11:378-82.
6. van der Drift JF, Brocaar MP, van Zanten GA. The relationship between the pure-tone audiogram and the click auditory brainstem response threshold in cochlear hearing loss. Audiology 1987;26:1-10.
7. Jerger J, Mauldin L. Prediction of sensorineural hearing level from the brain stem evoked response. Arch Otolaryngol 1978;104:456-61.
8. Coats AC, Martin JL. Human auditory nerve action potentials and brain stem evoked responses: effects of audiogram shape and lesion location. Arch Otolaryngol 1977;103:605-22.
9. Gorga MP, Johnson TA, Kaminski JR, et al. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds. Ear Hear 2006;27:60-74.
10. Stapells DR, Oates P. Estimation of the pure-tone audiogram by the auditory brainstem response: a review. Audiol Neurootol 1997;2:257-80.
11. Gorga MP, Kaminski JR, Beauchaine KA, et al. Auditory brainstem responses to tone bursts in normally hearing subjects. J Speech Hear Res 1988;31:87-97.
12. Gorga MP, Reiland JK, Beauchaine KA, et al. Auditory brainstem responses from graduates of an intensive care nursery: normal patterns of response. J Speech Hear Res 1987;30:311-8.
13. Stapells DR. Threshold estimation by the tone-evoked auditory brainstem response: a literature meta-analysis. J Speech Lang Pathol Audiol 2000;24:74-83.
14. Sininger YS, Abdala C, Cone-Wesson B. Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hear Res 1997;104:27-38.
15. Johnson TA, Brown CJ. Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison. Ear Hear 2005;26:559-76.
16. Stapells DR, Picton TW, Durieux-Smith A, et al. Thresholds for short-latency auditory-evoked potentials to tones in notched noise in normal-hearing and hearing-impaired subjects. Audiology 1990;29:262-74.
17. Gorga, MP, Worthington DW, Reiland JK, et al. Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram. Ear Hear 1985;6:105-12.
18. Van der Drift JFC, Brocaar MP, van Zanten GA. The relation between pure-tone audiogram and the click auditory brainstem response threshold in cochlear hearing loss. Audiology 1987;26:1-10.
19. Stapells DR. Threshold estimation by the tone-evoked auditory brainstem response: a literature meta-analysis. J Speech Lang Pathol Audiol 2000;24:74-83.
20. Beattie RC, Garcia E, Johnson A. Frequency-specific auditory brainstem responses in adults with sensorineural hearing loss. Audiology 1996;36:1-10.
21. Stapells DR, Gravel JS, Martin BA. Thresholds for auditory brain stem responses to tones in notched noise from infants and young children with normal hearing or sensorineural hearing loss. Ear Hear 1995;16:361-71.
22. Munnerley GM, Greville KA, Purdy SC, et al. Frequency-specific auditory brainstem responses relationship to behavioural thresholds in cochlear-impaired adults. Audiology 1991;30:25-32.
23. Werner LA, Folsom RC, Mancl LR. The relationship between auditory brainstem response and behavioral thresholds in normal hearing infants and adults. Hear Res 1993;68:131-41.
24. Gorga MP, Johnson TA, Kaminski JR, et al. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds. Ear Hear 2006;27:60-74.
25. Eggermont JJ. Evoked potentials as indicators of auditory maturation. Acta Otolaryngol 1985;421:41-7.
26. Schneider RA, Trehub SE, Morrongiello BA, et al. Developmental changes in masked thresholds. J Acoust Soc Am 1989;86:1733-42.
27. Olsho LW, Koch EG, Carter EA, et al. Puretone sensitivity of human infants. J Acoust Soc Am 1988;84:1316-24.
28. Primus MA, Thompson G. Response strength of young children in operant audiometry. J Speech Hear Res 1985;28:539-47.
29. Johnson TA, Brown CJ. Threshold prediction using the auditory steady-state response and the tone burst auditory brainstem response: A within-subject comparison. Ear Hear 2005;26:559-76.
30. Stapells DR, Picton TW, Durieux-Smith A, et al. Thresholds for short-latency auditory-evoked potentials to tones in notched noise in normal-hearing and hearing-impaired subjects. Audiology 1990;29:262-74.
31. Johnson KC. Audiologic assessment of children with suspected hearing loss. Otolaryngol Clin North Am 2002;35:711-32.
32. Callison DM. Audiologic evaluation of hearing-impaired infants and children. Otolaryngol Clin North Am 1999;32:1009-18.
33. Lee CY, Hsieh TH, Pan SL, et al. Thresholds of tone burst auditory brainstem responses for infants and young children with normal hearing in Taiwan. J Formos Med Assoc, 2007;106:847-53.
34. Kiang NYS. Stimulus representation in the discharge patterns of auditory neurons. In The Nervous System. Vol. 3. Human Communication and Its Disorders, ed. By DB Tower, 1975;81-96, Raven Press, New York.
35. Jastreboff PJ, Gray WC, Gold SL. Neurophysiological approach to tinnitus patients. American Journal of Otology 1996;17:236-40.
36. Roy D. Chopra R. Tinnitus: an update. Journal of the Royal Society of Health. 2002;122(1):21-3.
37. Kroener-Herwig B. Biesinger E. Gerhards F. Goebel G. Verena Greimel K. Hiller W. Retraining therapy for chronic tinnitus. A critical analysis of its status. Scandinavian Audiology. 2000;29(2):67-78.
38. Jastreboff PJ. Jastreboff MM. Tinnitus Retraining Therapy (TRT) as a method for treatment of tinnitus and hyperacusis patients. Journal of the American Academy of Audiology. 2000;11(3):162-77.
39. Wilson PH. Henry J. Bowen M. Haralambous G. Tinnitus reaction questionnaire: psychometric properties of a measure of distress associated with tinnitus. Journal of Speech & Hearing Research. 1991;34(1):197-201.
40. Norena A. Cransac H. Chery-Croze S. Towards an objectification by classification of tinnitus. Clinical Neurophysiology. 1999;110(4):666-75.
41. Muhlnickel W, Elbert T, Taub E et al. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 1998;95,10340-3.
42. Wallhausser-Franke E. Braun S. Langner G. Salicylate alters 2-DG uptake in the auditory system: a model for tinnitus? NeuroReport. 1996;7(10):1585-8.
43. Hoke M. Feldmann H. Pantev C. Lutkenhoner B. Lehnertz K. Objective evidence of tinnitus in auditory evoked magnetic fields. Hearing Research. 1989;37(3):281-6.
44. Jacobson GP. Ahmad BK. Moran J. Newman CW. Tepley N. Wharton J. Auditory evoked cortical magnetic field (M100-M200) measurements in tinnitus and normal groups. Hearing Research. 1991;56(1-2):44-52.
45. Picton TW. Durieux-Smith A. Auditory evoked potentials in the assessment of hearing. Neurologic Clinics. 1988;6(4):791-808.
46. Attias J. Pratt H. Auditory event related potentials during lexical categorization in the oddball paradigm. Brain & Language. 1992;43(2):230-9.
47. Scherg M. Picton TW. Separation and identification of event-related potential components by brain electric source analysis. Electroencephalography & Clinical Neurophysiology - Supplement. 1991;42:24-37.
48. Verkindt C. Bertrand O. Perrin F. Echallier JF. Pernier J. Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalography & Clinical Neurophysiology. 1995;96(2):143-56.
49. Hegerl U. Juckel G. Auditory evoked dipole source activity: indicator of central serotonergic dysfunction in psychiatric patients? Pharmacopsychiatry. 1994;27(2):75-8.
50. Attias J. Furman V. Shemesh Z. Bresloff I. Impaired brain processing in noise-induced tinnitus patients as measured by auditory and visual event-related potentials. Ear & Hearing. 1996;17(4):327-33.
51. Kadner A. Viirre E. Wester DC. Walsh SF. Hestenes J. Vankov A. Pineda JA. Lateral inhibition in the auditory cortex: an EEG index of tinnitus? NeuroReport. 2002;13(4):443-6.
52. Rauschecker JP. Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 1999; 22: 74 80.
53. Gerken GM, Hesse PS, Wiorkowski JJ. Auditory evoked responses in control subjects and in patients with problem-tinnitus. Hear Res 2001; 157: 52-64.
54. Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 2002; 82: 601 36.
55. Norena AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 2003; 183: 137-53.
56. Diesch E, Struve M, Rupp A, et al. Enhancement of steady-state auditory evoked magnetic fields in tinnitus. Eur J Neurosci 2004; 19: 1093-104.
57. Weisz N, Wienbruch C, Dohrmann K, et al. Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain 2005; 128: 2722-31.
58. Davis A, Refaie AE. Epidemiology of tinnitus. In: Tyler RS, ed. Tinnitus Handbook. San Diego: Singular Publishing Group, 2000; 1–24.
59. Lockwood AH, Salvi RJ, Burkard RF. Tinnitus. N Engl J Med 2002; 347: 904-10.
60. Rajan R. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nature Neurosci 1998; 1: 138 43.
61. Komiya H, Eggermont JJ. Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol 2000; 120: 750-6.
62. Hegerl U, Gallinat J, Mrowinski D. Intensity dependence of auditory evoked dipole source activity. Int J Psychophysiol 1994; 17: 1-13.
63. Norena A, Cransac H, Chery-Croze S. Towards an objectification by classification of tinnitus. Clin Neurophysiol 1999; 110: 666-75.
64. Jastreboff P, Gray W, Gold S. Neurophysiological approach to tinnitus patients. Am J Otol 1996; 17: 236–40.
65. Hoke M, Feldmann H, Pantev C, et al. Objective evidence of tinnitus in auditory evoked magnetic fields. Hear Res 1989; 37: 281-6.
66. Attias J, Urbach D, Gold S, et al. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res 1993; 71: 106-13.
67. Kadner A, Viirre E, Wester DC, et al. Lateral inhibition in the auditory cortex: an EEG index of tinnitus? NeuroReport 2002; 13: 443-6.
68. Dietrich V, Nieschalk M, Stoll W, et al. Cortical reorganization in patients with high frequency cochlear hearing loss. Hear Res 2001; 158: 95-101.
69. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983; 67: 361-70.
70. Moller AR, Moller MB, Yokota M. Some forms of tinnitus may involve the extralemniscal auditory pathway. Laryngoscope 1992; 102: 1165-71.
71. Cohn NB, Dustman RE, Shearer DE. The effect of age, sex and interstimulus interval on augmenting and reducing of occipital VEPs. Electroencephalogr Clin Neurophysiol 1985; 62: 177-83.
72. Carrillo-de-la-Pena MT. Effects of intensity and order of stimuli presentation on AEPs: an analysis of the consistency of EP augmenting/reducing in the auditory modality. Clin Neurophysiol 1999; 110: 924-32.
73. Schwerdtfeger A, Getzmann S, Baltissen R. Fast reducers, slow augmenters: a psychophysiological analysis of temperament-related differences in reaction time. Int J Psychophysiol 2004; 52: 225-37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37422-
dc.description.abstract論述重點: 客觀的音頻誘發聽性腦幹反應可以準確評估主觀上行為觀察聽力檢查所得語言頻率上的聽力好壞。本研究的第一部份在利用客觀的音頻誘發聽性腦幹反應去量測已知聽力正常的嬰幼兒,先建立起各語言頻率下的客觀正常聽閾數值,作為後續研究中比較客觀與主觀聽力檢查的正常參考值。接著在第二部份的研究中,我們進一步以較大規模的音頻誘發聽性腦幹反應與行為觀察聽力檢查資料進行統計分析。想找出客觀與主觀聽力檢查的相關程度,並了解成長年齡與不同的聽力損失對於上述相關所造成的影響。為了更進一步探討臨床上病人主觀的聽覺症狀耳鳴是否也可以經由客觀的聽力檢查加以量測,在第三部份的研究中,我們採用潛時較長的大腦皮質音頻誘發反應來探討耳鳴病人的聽覺病態,嚐試可否利用客觀的聽覺機能檢測表現出主觀的耳鳴特質,並運用作臨床上的診斷評估工具。
研究方法: 在第一部分的研究中,共有94位年齡介於3個月到3年之間的嬰幼兒接受了一系列的聽力檢查,包括音頻誘發聽性腦幹反應。利用統計分析其中4個頻率下的各項變數之間的關係,並建立正常參考值。接下來我們將實驗主體的數目擴充到1281位年齡介於3個月到3年之間的嬰幼兒,同樣接受一系列的聽力檢查,並包括音頻誘發聽性腦幹反應及聲場聽力檢查。利用統計分析其中4個語言頻率下兩種方法所量測的聽閾與各項變數之間的關係,並探討成長年齡與不同的聽力損失狀況下,上述兩種檢查結果的一致性與相關程度如何受到影響。在第三部份的研究中,我們在9位耳鳴病患與9位正常人進行大腦皮質音頻誘發反應的測量,分別記錄五種刺激強度(50, 56, 62, 68 and 74 dB nHL)及4個語言頻率下N1-P2在36個頭皮電極的波型變化。利用統計分析其中位電極記錄到的N1-P2隨刺激強度變化的情形。
結果: 第一部分的研究結果顯示嬰幼兒在一般語言頻率(500, 1000, 2000, and 4000 Hz)下,以音頻誘發聽性腦幹反應推測的聽閾大概介在10到20 分貝之間。其中性別、左右側及成長年齡並不影響測量的結果。第二部分的研究結果顯示嬰幼兒在一般語言頻率(500, 1000, 2000, and 4000 Hz)下,接受音頻誘發聽性腦幹反應及聲場聽力檢查推估的聽力狀態有明顯的相關(Ps<0.001),且該相關不受成長年齡與不同的聽力損失所影響。不過在聽力損失極為輕微的狀態下,相關強度稍受影響。其中,20分貝以下的聽力損失狀態下,在3個語言頻率下(1000, 2000 and 4000 Hz)未能保持相關。第三部分的研究結果顯示,異常的大腦皮質音頻誘發反應隨刺激強度變化的情形,在4個語言頻率下整體出現不同於正常族群。然而這樣的結果並未重現於任何單一的頻率下。
結論: 根據以往的文獻報告與本實驗的結果,我們建議將嬰幼兒的音頻誘發聽性腦幹反應推測的正常聽閾於500, 1000 Hz處的下限訂在30分貝,2000, 4000 Hz處的下限訂在25分貝。測量的過程中,考量成長年齡與不同的聽力損失所可能造成的些微影響,先進行音頻誘發聽性腦幹反應推估的聽力狀態對最終行為觀察聽力檢查所得的診察結果極有助益。另外,利用客觀的聽覺機能檢測表現出主觀的耳鳴特質在大腦皮質音頻誘發反應的測量中獲得初步的証實。該表現在聽力正常的耳鳴病患未出現邊緣頻率的特性,指出現在有聽力損失的耳鳴病患上。後續研究將有助於進一步將客觀的聽覺機能檢查運用於臨床上診斷主觀聽覺病態的評估工具。
zh_TW
dc.description.abstractBackground/Purpose: Objective measurement by tone burst evoked auditory brainstem response provides relatively accurate estimates of the behavioral auditory thresholds at speech frequencies. The first part of this study reports the preliminary data of tone burst auditory brainstem response measurements in infants and very young children. As an excellent agreement and correlation between objective evoked-potential and subjective behavioral thresholds have been demonstrated by previous studies, the second part of this study investigates the effects of different age and degree of hearing loss on the above agreement and correlation. Comparison was made between objective tone burst auditory brainstem responses and subjective sound field audiometry. To further compare the differences between objective and subjective measures, the third part of this study applied another evoked potentials test to investigate if the subjective tinnitus demonstrates increased intensity dependence objectively at the selected frequencies.
Methods: Of the part one study, 94 infants and very young children from 3 months to 3 years of age underwent tone burst auditory brainstem response measurements at selected four frequencies. Statistical methods were applied to study the relationship among recorded variables. In the part two, 1281 infants and very young children aged from 3 months to 3 years underwent diagnostic audiometry including sound field audiometry and tone burst auditory brainstem response measurements. Statistical analyses were applied to investigate the effects of age and hearing loss on the agreement and correlation between two measured thresholds. In the part three, we applied auditory cortical evoked potential test to investigate 9 tinnitus patients and 9 age- and sex-matched healthy subjects without tinnitus. Auditory cortical evoked potentials (N1-P2) were elicited from stimuli at four frequencies (4000, 2000, 1000 and 500 Hz) with five intensities (50, 56, 62, 68 and 74 dB nHL). Intensity dependences by latency of N1 and amplitude of N1-P2 were surveyed at midline electrodes.
Results: The results of part one indicate that the averaged tone burst auditory brainstem response thresholds of the infants and young children with normal hearing in Taiwan are typically 10 to 20 dB nHL at 500, 1000, 2000, and 4000 Hz. There is no statistically difference for the thresholds regarding gender, laterality, and age distribution in this study. In part two, significant correlations (Ps<0.001) were seen between two measured thresholds across groups of different ages and different degree of hearing loss more than 20 dB HL. However, the correlation strength deteriorated along with decreased degree of hearing loss. Correlations for hearing thresholds less than 20 dB HL were not significant at 1000, 2000 and 4000 Hz. In part three, significant differences existed in the intensity dependence of amplitude N1-P2 to the pooled frequencies at Fz and Cz position. These differences suggested that tinnitus patients tended to respond less to increased sound intensity and were inclined to weaker intensity dependence.
Conclusion: Based on the published research and our study, we suggest setting the normal criterion levels for the infants and young children in Taiwan of the tone burst auditory brainstem response to air-conducted tones as 30 dB nHL for 500 and 1000 Hz, and 25 dB nHL for 2000 and 4000 Hz. From part two, properly obtained and interpreted with respect to the effects of age and degree of hearing loss, the evoked potentials test provide the very informative hearing threshold reference to perfect the behavioral audiometric evaluation for the infants and very young children with hearing loss. From part three, objectively increased intensity dependence of N1-P2 component at selected frequency can not be demonstrated in tinnitus patients with normal hearing. Restated, the edge frequency phenomenon fails to present in tinnitus patients with normal hearing, a different characteristic from tinnitus patients with hearing loss.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:27:37Z (GMT). No. of bitstreams: 1
ntu-97-D92548004-1.pdf: 468742 bytes, checksum: b5bffeb4cce486fb137872bf98c7d03a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目 錄
口試委員會審定書
誌謝 1
序言 ---------------------------------------------------------------------------------------------2
中文摘要 ---------------------------------------------------------------------------------------9
英文摘要 --------------------------------------------------------------------------------------12
詞彙與縮寫對照表 --------------------------------------------------------------------------18
圖表目錄 --------------------------------------------------------------------------------------20
Chapter 1 Objective and Subjective Measurements of the Hearing Thresholds for the Infants and Very Young Children
1.1 Introduction -------------------------------------------------------------------22
1.2 Meterials and Methods ------------------------------------------------------26
1.3 Results -------------------------------------------------------------------------28
1.4 Discussion -------------------------------------------------------------------- 33
Chapter 2 Agreement and Correlation between Hearing Thresholds Measured by
Objective and Subjective Audiometry
2.1 Introduction 38
2.2 Meterials and Methods 42
2.3 Results 45
2.4 Discussion 50
Chapter 3 Objective Measurements of Subjective Tinnitus
3.1 Introduction 55
3.2 Meterials and Methods 60
3.3 Results 63
3.4 Discussion 71
結語 -------------------------------------------------------------------------------------------75
參考文獻 83
dc.language.isozh-TW
dc.subject耳鳴zh_TW
dc.subject音頻誘發聽性腦幹反應zh_TW
dc.subject邊緣頻率zh_TW
dc.subject聽力損失zh_TW
dc.subject嬰幼兒zh_TW
dc.subject聽閾zh_TW
dc.subject聲場聽力檢查zh_TW
dc.subject大腦皮質音頻誘發反應zh_TW
dc.subjectsound field audiometryen
dc.subjecttone burst evoked auditory brainstem responseen
dc.subjectinfants and young childrenen
dc.subjecthearing lossen
dc.subjectedge frequencyen
dc.subjectauditory cortical evoked potentialsen
dc.subjecttinnitusen
dc.subjectintensity dependenceen
dc.subjectpure-tone thresholdsen
dc.title聽覺誘發電位在評估嬰幼兒聽力損失與成人耳鳴之運用zh_TW
dc.titleApply auditory evoked potentials to evaluate hearing loss of very young children and tinnitus of adultsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭德盛,許權振,鄭國順,劉殿楨,謝建興
dc.subject.keyword音頻誘發聽性腦幹反應,邊緣頻率,聽力損失,嬰幼兒,聽閾,聲場聽力檢查,耳鳴,大腦皮質音頻誘發反應,zh_TW
dc.subject.keywordauditory cortical evoked potentials,edge frequency,hearing loss,infants and young children,intensity dependence,pure-tone thresholds,sound field audiometry,tinnitus,tone burst evoked auditory brainstem response,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2008-07-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
457.76 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved