請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37396
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振中 | |
dc.contributor.author | Ni-Shine Lin | en |
dc.contributor.author | 林妮嫺 | zh_TW |
dc.date.accessioned | 2021-06-13T15:26:44Z | - |
dc.date.available | 2013-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-17 | |
dc.identifier.citation | 1. Hörnlimann, B.; Riesner, D.; Kretzschmar, H., Prions in humans and animals In 2007.
2. Dobson, C. M., Protein folding and misfolding. Nature 2003, 426, (6968), 884-890. 3. Prusiner, S. B., Novel Proteinaceous Infectious Particles Cause Scrapie. Science 1982, 216, (4542), 136-144. 4. Prusiner, S. B., Prions. Proceedings of the National Academy of Sciences of the United States of America 1998, 95, (23), 13363-13383. 5. Griffith, J. S., Self-Replication and Scrapie. Nature 1967, 215, (5105), 1043-&. 6. Hetz, C.; Soto, C., Protein misfolding and disease: the case of prion disorders. Cellular and Molecular Life Sciences 2003, 60, (1), 133-143. 7. Bueler, H.; Fischer, M.; Lang, Y.; Bluethmann, H.; Lipp, H. P.; Dearmond, S. J.; Prusiner, S. B.; Aguet, M.; Weissmann, C., Normal Development and Behavior of Mice Lacking the Neuronal Cell-Surface Prp Protein. Nature 1992, 356, (6370), 577-582. 8. Zahn, R.; Liu, A. Z.; Luhrs, T.; Riek, R.; von Schroetter, C.; Garcia, F. L.; Billeter, M.; Calzolai, L.; Wider, G.; Wuthrich, K., NMR solution structure of the human prion protein. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, (1), 145-150. 9. Aguzzi, A., Prion Disease In Principles of molecular Medicine, Second ed.; S.Runge, M.; Patterson, C., Eds. 2004; pp 1142-1152. 10. Pan, K.; Baldwin, M.; Nguyen, J.; Gasset, M.; Serban, A.; Groth, D.; Mehlhorn, I.; Huang, Z.; Fletterick, R. J.; Cohen, F. E.; Prusiner, S. B., Conversion of {alpha}-Helices {beta}-Sheets Features in the Formation of the scrapie Prion Proteins. PNAS 1993, 90, (23), 10962-10966. 11. Harper, J. D.; Lansbury, P. T., Models of amyloid seeding in Alzheimier's disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annual Review of Biochemistry 1997, 66, 385-407. 12. Cohen, F. E.; Prusiner, S. B., Pathologic conformations of prion proteins. Annual Review of Biochemistry 1998, 67, 793. 13. Soto, C.; Saborio, G. P., Prions: disease propagation and disease therapy by conformational transmission. Trends in Molecular Medicine 2001, 7, (3), 109-114. 14. Jimenez, J. L.; Nettleton, E. J.; Bouchard, M.; Robinson, C. V.; Dobson, C. M.; Saibil, H. R., The protofilament structure of insulin amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (14), 9196-9201. 15. Petkova, A. T.; Leapman, R. D.; Guo, Z. H.; Yau, W. M.; Mattson, M. P.; Tycko, R., Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 2005, 307, (5707), 262-265. 16. Eanes, E. D.; Glenner, G. G., X-Ray Diffraction Studies on Amyloid Filaments. Journal of Histochemistry & Cytochemistry 1968, 16, (11), 673-&. 17. Harrison, R. S.; Sharpe, P. C.; Singh, Y.; Fairlie, D. P., Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 2007, 159, 77. 18. Pelton, J. T.; McLean, L. R., Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry 2000, 277, (2), 167-176. 19. Paul, C.; Wang, J. P.; Wimley, W. C.; Hochstrasser, R. M.; Axelsen, P. H., Vibrational coupling, isotopic editing, and beta-sheet structure in a membrane-bound polypeptide. Journal of the American Chemical Society 2004, 126, (18), 5843-5850. 20. Decatur, S. M., Elucidation of residue-level structure and dynamics of polypeptides via isotopp-edited infrared spectroscopy. Accounts of Chemical Research 2006, 39, (3), 169-175. 21. Czogalla, A.; Pieciul, A.; Jezierski, A.; Sikorski, A. F., Attaching a spin to a protein - site-directed spin labeling in structural biology. Acta Biochimica Polonica 2007, 54, (2), 235-244. 22. Margittai, M.; Langen, R., Spin labeling analysis of amyloids and other protein aggregates. In Amyloid, Prions, and Other Protein Aggregates, Pt C, 2006; Vol. 413, pp 122-139. 23. Cobb, N. J.; Sonnichsen, F. D.; McHaourab, H.; Surewicz, W. K., Molecular architecture of human prion protein amyloid: A parallel, in-register beta-structure. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, (48), 18946-18951. 24. Altenbach, C.; Oh, K. J.; Trabanino, R. J.; Hideg, K.; Hubbell, W. L., Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: Experimental strategies and practical limitations. Biochemistry 2001, 40, (51), 15471-15482. 25. Tycko, R., Molecular structure of amyloid fibrils: insights from solid-state NMR. Quarterly Reviews of Biophysics 2006, 39, (1), 1-55. 26. Tycko, R., Solid-state NMR as a probe of amyloid structure. Protein and Peptide Letters 2006, 13, (3), 229-234. 27. Tycko, R., Applications of solid state NMR to the structural characterization of amyloid fibrils: methods and results. Progress in Nuclear Magnetic Resonance Spectroscopy 2003, 42, (1-2), 53-68. 28. Tycko, R., Insights into the amyloid folding problem from solid-state NMR. Biochemistry 2003, 42, (11), 3151-3159. 29. Griffiths, J. M.; Ashburn, T. T.; Auger, M.; Costa, P. R.; Griffin, R. G.; Lansbury, P. T., Rotational Resonance Solid-State Nmr Elucidates a Structural Model of Pancreatic Amyloid. Journal of the American Chemical Society 1995, 117, (12), 3539-3546. 30. Lansbury, P. T.; Costa, P. R.; Griffiths, J. M.; Simon, E. J.; Auger, M.; Halverson, K. J.; Kocisko, D. A.; Hendsch, Z. S.; Ashburn, T. T.; Spencer, R. G. S.; Tidor, B.; Griffin, R. G., Structural Model for the Beta-Amyloid Fibril Based on Interstrand Alignment of an Antiparallel-Sheet Comprising a C-Terminal Peptide. Nature Structural Biology 1995, 2, (11), 990-998. 31. Wickner, R. B.; Dyda, F.; Tycko, R., Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register beta-sheet structure. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, (7), 2403-2408. 32. Burkoth, T. S.; Benzinger, T. L. S.; Urban, V.; Morgan, D. M.; Gregory, D. M.; Thiyagarajan, P.; Botto, R. E.; Meredith, S. C.; Lynn, D. G., Structure of the beta-amyloid((10-35)) fibril. Journal of the American Chemical Society 2000, 122, (33), 7883-7889. 33. Balbach, J. J.; Ishii, Y.; Antzutkin, O. N.; Leapman, R. D.; Rizzo, N. W.; Dyda, F.; Reed, J.; Tycko, R., Amyloid fibril formation by A beta(16-22), a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 2000, 39, (45), 13748-13759. 34. Petkova, A. T.; Tycko, R., Rotational resonance in uniformly C-13-labeled solids: effects on high-resolution magic-angle spinning NMR spectra and applications in structural studies of biomolecular systems. Journal of Magnetic Resonance 2004, 168, (1), 137-146. 35. Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (26), 16742-16747. 36. Paravastu, A. K.; Petkova, A. T.; Tycko, R., Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide. Biophysical Journal 2006, 90, (12), 4618-4629. 37. Antzutkin, O. N.; Leapman, R. D.; Balbach, J. J.; Tycko, R., Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry 2002, 41, (51), 15436-15450. 38. Chan, J. C. C.; Oyler, N. A.; Yau, W. M.; Tycko, R., Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Biochemistry 2005, 44, (31), 10669-10680. 39. Shewmaker, F.; Ross, E. D.; Tycko, R.; Wickner, R. B., Amyloids of shuffled prion domains that form Prions have a parallel in-register beta-sheet structure. Biochemistry 2008, 47, (13), 4000-4007. 40. van der Wel, P. C. A.; Lewandowski, J. R.; Griffin, R. G., Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. Journal of the American Chemical Society 2007, 129, (16), 5117-5130. 41. Shewmaker, F.; Wickner, R. B.; Tycko, R., Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, (52), 19754-19759. 42. Jaroniec, C. P.; MacPhee, C. E.; Astrof, N. S.; Dobson, C. M.; Griffin, R. G., Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (26), 16748-16753. 43. Ritter, C.; Maddelein, M. L.; Siemer, A. B.; Luhrs, T.; Ernst, M.; Meier, B. H.; Saupe, S. J.; Riek, R., Correlation of structural elements and infectivity of the HET-s prion. Nature 2005, 435, (7043), 844-848. 44. Meier, B. H.; Verel, R.; Steinmetz, M.; Siemer, A. B.; Koneke, S.; Lange, A.; van Melckebeke, H.; Wasmer, C.; Ernst, M., Amyloids and Prions: structure, conformations and conformational transitions as seen by NMR. Faseb Journal 2007, 21, (5), A96-A96. 45. Wasmer, C.; Lange, A.; Van Melckebeke, H.; Siemer, A. B.; Riek, R.; Meier, B. H., Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 2008, 319, (5869), 1523-1526. 46. Lee, S.-W.; Mou, Y.; Lin, S.-Y.; Chou, F.-C.; Tseng, W.-H.; Chen, C.-h.; Lu, C.-Y. D.; Yu, S. S.-F.; Chan, J. C. C., Steric Zipper of the Amyloid Fibrils Formed by Residues 109–122 of the Syrian Hamster Prion Protein. Journal of Molecular Biology 2008. 47. Lim, K. H.; Nguyen, T. N.; Damo, S. M.; Mazur, T.; Ball, H. L.; Prusiner, S. B.; Pines, A.; Wemmer, D. E., Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89-143(P101L). Solid State Nuclear Magnetic Resonance 2006, 29, (1-3), 183-190. 48. Luca, S.; Yau, W. M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR. Biochemistry 2007, 46, (47), 13505-13522. 49. KAMMERER, R. A.; KOSTREWA, D.; ZURDO, J.; DETKEN, A.; GARCIA-ECHEVERRIA, C.; GREEN, J. D.; MULLER, S. A.; MEIER, B. H.; WINKLER, F. K.; DOBSON, C. M.; STEINMETZ, M. O., Exploring amyloid formation by a de novo design. Proceedings of the National Academy of Sciences USA 2004, 101, 4435–4440. 50. Heise, H.; Hoyer, W.; Becker, S.; Andronesi, O. C.; Riedel, D.; Baldus, M., Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (44), 15871-15876. 51. KAMIHIRA, M.; NAITO, A.; TUZI, S.; NOSAKA, A. Y.; SAITO, H., Conformational transitions and fibrillation mechanism of human calcitonin as studied by highresolution solid state 13C NMR. Protein Science 2000, 9, 867–877. 52. Forloni, G.; Angeretti, N.; Chiesa, R.; Monzani, E.; Salmona, M.; Bugiani, O.; Tagliavini, F., Neurotoxicity of a Prion Protein-Fragment. Nature 1993, 362, (6420), 543-546. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37396 | - |
dc.description.abstract | 普昂疾病(prion disease)為類澱粉樣疾病(amyloid disease)的一種,是會傷害腦神經細胞的感染性疾病,造成這種疾病的主要原因為結構有異變的普昂蛋白(prion protein, PrPSc)。利用電子顯微鏡測量PrPSc所形成的沉澱物,能夠觀察到很明顯的絲狀纖維結構。類澱粉樣蛋白纖維為一種非晶性的低水溶性物質,所以一般用於解出蛋白質分子結構的液態核磁共振與X光繞射都不適用,固態核磁共振技術為最合適的方法。在論文中,我們以人類普昂胜肽第127至147的多肽片段(Ac-GYMLGSAMSRPIIHFGSDYED-NH2, HuPrP127-147)所形成的類澱粉樣纖維來進行研究,利用固態核共振技術來解出其分子模型。HuPrP127-147普遍被認為是致病的主要胜肽片段之ㄧ,因此在普昂疾病的研究中是一個重要題目。除此以外,HuPrP127-147胜肽的中段含有一個脯胺酸殘基(P137),基於脯胺酸特別的空間構形,HuPrP127-147纖維的分子結構也是一個十分有趣的生物物理課題。我們成功的培養出HuPrP127-147的類澱粉樣蛋白纖維,並且利用ThT 螢光吸收、穿透式電子顯微鏡與原子力顯微鏡去確定其纖維分子的生成與形成的構形,我們量測出成熟的類澱粉樣纖維分子具有絞結(twist)的結構,絞結之間的長度約為70 至80 nm,高度約為3~4 nm。接著利用固態核磁共振去偵測其分子結構。我們由碳13訊號的線寬發現HuPrP127-147胜肽分子由第129號至142號殘基位置為結構性較高的區域,並且透過化學位移的偏移與背脊扭轉角psi的判定來確定此區域為b-strand的二級結構,再偵測出部分碳13之間的同核距離關係。實驗結果顯示,HuPrP127-147類澱粉樣蛋白纖維的基本結構為相互平行對齊的b-strand所組成,彼此之間的距離約為5~6 Å。由N端到C端的殘基訊號的強度發現, 以P137殘基位置為分界靠近C端的b-strand區域擁有較高動性結構。最後,使用紅外光吸收光譜觀測特定殘基位置的紅位移現象來偵測纖維分子中每條多肽之間的排列方式,實驗結果發現以P137殘基位置為分界靠近N端的b-strand區域的結構為cross-b的結構;靠近C端的b-strand區域雖有一定的結構性,但沒有背脊氫鍵鍵結,可能只有靠著支鏈之間的作用力來穩定其結構。 | zh_TW |
dc.description.abstract | Prion disease is a kind of amyloid disease, which is caused by the conversion of prion protein from its normal cellular form (cellular prion protein, PrPC) to the disease-specific form (scrapie prion protein, PrPSc). PrPSc exists in the form of amyloid fibrils, which are inherent insoluble and non-crystalline solids. Due to this reason, the detailed structural information of PrPSc is difficult to obtain by conventional techniques such as X-ray crystallography or solution-state NMR. It has recently been shown that solid-state nuclear magnetic resonance (SSNMR) is a particularly useful method for the structural elucidation of amyloid fibrils. In our study, amyloid fibrils are prepared by incubating the peptide fragment of human prion protein (HuPrP127-147), Ac-GYMLGSAMSRPIIHFGSDYED-NH2, in PBS at 37°C. HuPrP127-147 is believed to be an infectious fragment of the amyloidogenic region. In addition, HuPrP127-147 contains a proline residue, whose structure is highly constrained. Therefore, studying the fibrillar structure of HuPrP127-147 is an interesting topic of biophysics. Accordingly, ThT fluorescence spectra are obtained to confirm the fibril formation and the fibril morphology is studied by TEM and AFM. The fibrils have twist morphology and the twist period is about 70 to 80 nm The fibril height is between 3 and 4 nm. SSNMR measurements are carried out to probe for the molecular structure of the fibril samples. Our data show that the fibrils are formed by parallel in-registered alignment of peptides adopting b-strand conformation. In particular, each peptide constituting the fibrils has a b-strand region, viz. 129-142. With the proline (P137) as the boundary, the b-strand region near the N terminal (b1) has higher structural order than that near the C terminus (b2), which is associated with considerable dynamic motions. We also use FT-IR measurements to detect the vibrational dipole coupling in isotope-edited polypeptides. The results show that the b1 region conforms to the cross-b structure, but not the b2 region. We speculate that the b2 region is mainly stabilized by the side-chain-side-chain interactions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:26:44Z (GMT). No. of bitstreams: 1 ntu-97-R95223030-1.pdf: 6559321 bytes, checksum: 03fbaa2568f2d4e98f85e6bf0a934f8e (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 第一章 序論 1
1-1 普昂蛋白簡介 1 1-2 普昂蛋白結構異變 3 1-2-1 人類普昂蛋白 4 1-3 偵測PrPSc的分子結構 7 1-3-1 紅外線光譜 8 1-3-2 電子自旋光譜 10 1-3-3 固態核磁共振 11 1-4 研究動機 17 1-5 參考文獻 17 第二章 核磁共振基本原理 22 2-1 前言 22 2-2 核磁共振基本原理 22 2-2-1 核自旋(Nuclear spin) 22 2-2-2 核子自旋弛豫(T1, T2 relaxation) 24 2-2-3 NMR訊號的產生 26 2-3 固態核磁共振(Solid state NMR) 27 2-3-1 核自旋的交互作用 27 2-3-2 魔術角旋轉(Magic angle spinning, MAS) 31 2-3-3 偶極去耦(Dipolar decoupling) 33 2-3-5 交叉極化(Cross-polarization, CP) 33 2-3-6回耦(recoupling) 36 2-4 固態核磁共振對於偵測蛋白質二級結構的應用 39 2-4-1 二維譜簡介 39 2-4-2 二級結構的判定 40 2-4-3 背脊扭轉角的測定 43 2-5 偵測HuPrP127-147類澱粉樣纖維分子 46 2-6 參考文獻 46 第三章、合成與鑑定 48 3-1 材料與使用儀器 48 3-1-1化學藥品 48 3-1-2 使用儀器型號一覽表 50 3-2 胜肽樣品的製備 52 3-2-1 固相胜肽合成基本原理 52 3-2-2胜肽樣品的純化與鑑定 57 3-3 HuPrP127-147類澱粉樣蛋白纖維的備製 59 3-4 類澱粉樣蛋白纖維的鑑定 60 3-4-1 穿透式電子顯微鏡 60 3-4-2 原子力顯微鏡 61 3-4-3 ThT(Thioflavin-T) 螢光吸收 62 3-5 類澱粉樣纖維分子結構的鑑定 63 3-5-1 固態核磁共振 63 3-5-2 紅外光吸收光譜(FT-IR) 64 3-6 固態核磁共振光譜 65 3-6-1 13C-H交叉極化魔角旋轉光譜 65 3-6-2 13C-13C 同核相關性光譜 66 3-6-3 R-TOBSY的傳遞時間 68 3-6-4 fpRFDR-CT光譜 68 3-6-5 偵測普昂蛋白的背脊扭轉角psi 69 3-7 參考文獻 70 第四章 實驗結果與討論 72 4-1 胜肽的純化與鑑定 72 4-2 類澱粉樣纖維分子的鑑定 74 4-2-1 ThT螢光吸收 74 4-2-2穿透式電子顯微鏡 75 4-2-3 原子力顯微鏡 79 4-3 固態核磁共振實驗 81 4-3-1 13C-13C同核相關二維譜 81 4-3-2背脊扭轉角psi的測定 88 4-3-3 HuPrP127-147纖維分子的二級結構 92 4-3-3 R-TOBSY 傳遞時間 92 4-4 建構人類普昂胜肽片段127-147所形成類澱粉樣纖維分子模型 93 4-4-1 HuPrP127-147分子間結構(Intermolecular Structure) 93 4-4-2 FT-IR實驗 98 4-4-3 HuPrP127-147類澱粉樣纖維分子之動性結構 101 4-5 與SHPrP109-122所形成的類澱粉樣纖維分子做比較 103 4-6 參考文獻 104 第五章 總結與未來展望 107 5-1 論文總結 107 5-2 未來展望 107 | |
dc.language.iso | en | |
dc.title | 人類普昂蛋白127-147胜肽片段所形成含脯胺酸殘基之類澱粉樣纖維的分子結構研究 | zh_TW |
dc.title | Molecular Structure of Proline Containing Amyloid Fibrils Formed by Residues 127 to 147 of the Human Prion Protein | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃太煌,吳世雄,李弘文 | |
dc.subject.keyword | 人類普昂蛋白,脯胺酸殘基, | zh_TW |
dc.subject.keyword | amyloid fibril,solid state NMR, | en |
dc.relation.page | 117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 6.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。