請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37394
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳弘成(Hon-Cheng Chen) | |
dc.contributor.author | Li-Yuan Hung | en |
dc.contributor.author | 洪吏院 | zh_TW |
dc.date.accessioned | 2021-06-13T15:26:39Z | - |
dc.date.available | 2011-07-21 | |
dc.date.copyright | 2008-07-21 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-17 | |
dc.identifier.citation | Abdo, Z., Minin, V.N., Joyce, P., Sullivan, J., 2005. Accounting for uncertainty in the tree topology has little effect on the decisiontheoretic approach to model selection in phylogeny estimation. Mol. Biol. Evol. 22, 691-703.
Alcock, A., 1905. Catalogue of the Indian decapod Crustacea in the collection of the Indian Museum. Part II. Anomura. Fasciculus I. Pagurides. Indian Museum, Calcutta. Asakura, A., 2004. Recent topics on taxonomy of hermit crabs from Japanese waters-Family Coenobitidae. Aquabiology 26, 83-89. Ball, E.E., Haig, J., 1974. Hermit crabs from the tropical Eastern Pacific. I. Distribution, color, and natural history of some common shallow-water species. Bull. Southern California Acad. Sci. 73, 95-104. Barnes, D.K.A., Arnold, R.J., 2001. Ecology of subtropical hermit crabs in SW Madagascar: cluster structure and function. Mar. Biol. 139, 463-474. Biffar, T.A., 1972. A study of the eastern Pacific representatives of the genus Callianassa (Crustacea, Decapoda, Callianassidae). University of Miami, Florida, p. 280. Bouvier, E.L., 1890. Révision des cénobites du muséum. Bulletin de la Societe Philomatique de Paris 2, 143-150. Claridge, M.F., Dawah, H.A., Wilson, M.R., 1997. Species: The units of biodiversity. Chapman & Hall, London. Cunningham, C.W., 1997. Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing and iterative procedure for choosing among phylogenetic methods. Syst. Biol. 46, 464-478. Cunningham, C.W., Blackstone, N.W., Buss, L.W., 1992. Evolution of king crabs from hermit crab ancestors. Nature 355, 539-542. Dana, J.D., 1852. “Crustacea,” Part I, “United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U.S.N.,” Vol. XIII. United States Exploring Expedition, Philadelphia. Dana, J.D., 1855. “Crustacea,” Part I, “United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U.S.N.,” Atlas Vol. XIII. United States Exploring Expedition, Philadelphia. Ebach, M.C., Holdrege, C., 2005. DNA barcoding is no substitute for taxonomy. Nature 434, 697. Felsenstein, J., 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368-376. Fize, A., Serène, R., 1955. Les pagures du Viêt-Nam. Institut Océanographique, Nhatrang. Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294-297. Fourment, M., Gibbs, M.J., 2006. PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol. Biol. 6. Frati, F., Simon, C., Sullivan, J., Swofford, D.L., 1997. Gene evolution and phylogeny of the mitochondrial cytochrome oxidase gene in Collembola. J. Mol. Evol. 44, 145-158. Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), 1996. Markov chain Monte Carlo in practice. Chapman & Hall, London. Greenaway, P., 2003. Terrestrial adaptations in the Anomura (Crustacea: Decapoda). Mem. Mus. Vic. 60, 13-26. Gu, X., Fu, Y.-X., Li, W.-H., 1995. Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol. Biol. Evol. 12, 546-557. Hasegawa, M., Kishino, K., Yano, T., 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160-174. Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R., 2003a. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. Biol. Sci. 270, 313-321. Hebert, P.D.N., Ratnasingham, S., deWaard, J.R., 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Biol. Sci. 270, S96-S99. Henderson, J.R., 1888. Report on the Anomura collected by HMS Challenger during the years 1873-76. Report on the scientific results of the voyage of HMS Challenger during the years 1873-1876. Zoology 27. Hillis, D.M., Bull, J.J., 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42, 182-192. Hillis, D.M., Huelsenbeck, J.P., Cunningham, C.W., 1994. Application and accuracy of molecular phylogenies. Science 264, 671-677. Huang, Z.G. (Ed.), 1994. Marine species and their distributions in China's Seas. China Ocean Press, Beijing. Huelsenbeck, J.P., Crandall, K.A., 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst. 28, 437-466. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P., 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310-2314. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. ClustalW and ClustalX version 2.0. Bioinformatics 23, 2947-2948. Lefébure, T., Douady, C.J., Gouy, M., Gibert, J., 2006. Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 40, 435-447. McLaughlin, P.A., Dworschak, P.C., 2001. Reappraisal of hermit crab species (Crustacea: Anomura: Paguridea) reported by Camill Heller in 1861, 1862 and 1865. Annalen des Naturhistorischen Museums in Wien 103B, 135-176. McLaughlin, P.A., Rahayu, D.L., Komai, T., Chan, T.Y., 2007. A catalog of the hermit crabs (paguroidea) of Taiwan. National Taiwan Ocean University, Keelung. Morrison, C.L., Harvey, A.W., Lavery, S., Tieu, K., Huang, Y., Cunningham, C.W., 2002. Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form. Proc. R. Soc. Lond. B. Biol. Sci. 269, 345-350. Nakasone, Y., 1988. Land hermit crabs from the Ryukyus, Japan, with a description of a new species from the Philippines (Crustacea, Decapoda, Coenobitidae). Zool. Sci. 5, 165-178. Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L., Grabowski, G., 1991. The simple fool's guide to PCR version 2.0. University of Hawaii, Honolulu. Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793-808. Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817-818. Poupin, J., 1994. Quelques crustacés décapodes communs de Polynésie Francaise. Rapport Scientifique du Service Mixte de Surveillance Radiologique et Biologique de l'Homme et de l'Environment, Montlhéry, p. 86. Reese, E.S., 1968. Shell use: an adaptation for emigration from the sea by coconut crabs. Science 161, 385-386. Ripplinger, J., Sullivan, J., 2008. Does choice in model selection affect maximum likelihood analysis? Syst. Biol. 57, 76-85. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes3: Bayesian phylogenetic inference under mixed models. Biometrics 19, 1572-1574. Sites, J.W., Marshall, J.C., 2004. Operational criteria for delimiting species. Annu. Rev. Ecol. Evol. Syst. 35, 199-227. Sullivan, J., Swofford, D.L., 1997. Are guinea pigs rodents? The importance of adequate models in molecular phylogenies. J. Mamm. Evol. 4, 77-86. Swofford, D.L., 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates. Takahasi, S., 1934. On the land-hermits (Coenobitidae) in Formosa. Trans. Hist. Soc. Formosa 24, 506-517. Terao, A., 1913. A catalogue of hermit-crabs found in Japan (Paguridea excluding Lithodidae), with description of four new species. Annot. Zool. Japonenses 8, 355-391. Wolff, T., 1961. Description of a remarkable deep-sea hermit crab, with notes on the evolution of the Paguridea. Galathea Report 4, 11-32. Yu, H.P., 1985. Notes on the land hermit-crabs (Crustacea, Decapoda, Coenobitidae) from Lan-yu Island in the Southern Taiwan. J. Taiwan Museum 38, 59-64. Yu, H.P., Foo, K.Y., 1991. Hermit crabs of Taiwan. SMC Publishing Inc., Taipei. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37394 | - |
dc.description.abstract | 在分類學上,陸寄居蟹屬於陸寄居蟹科(Coenobitidae),共包含兩屬,亦即椰子蟹屬(Birgus)和陸寄居蟹屬(Coenobita)。椰子蟹(Birgus)是世界上最大的陸棲節肢動物,外觀形態和同為十足目的螃蟹頗為相似,擁有一身堅硬的外甲殼。而平時背著貝殼的陸寄居蟹(Coenobita)則必須仰賴身上所背負的貝殼來提供防禦掠食者之用。陸寄居蟹的不對稱腹部與背殼行為,一直以來都被視為演化自海寄居蟹的直接證據。陸寄居蟹為了保護柔軟的腹部,必須將腹部旋入貝殼之中,也因此對陸寄居蟹的形態演化產生了影響。本論文主要之重點目標為以下兩項:一、藉由形態與分子證據,對陸寄居蟹之種間分類進行再次的檢驗與深入的探討;二、日趨成熟的系統發生學理論與分析軟體,有助於解決物種間之親緣關係與演化之謎,本文亦藉此強大的工具對陸寄居蟹進行全面的剖析。在分析方法上,本研究採用形態特徵與分子序列的綜合比較分析,此方法的優點是:提供更高的解析力,以及更佳的正確性。本研究陸續取得了來自世界各地的陸寄居蟹mtDNA序列,包含COI和16S rDNA兩個片段;其中有九個物種是世界首次被定序,以作為本次研究之用(C. brevimanus, C. cavipes, C. clypeatus, C. hilgendorfi, C. perlatus, C. pseudorugosus, C. purpureus, C. rugosus, C. violascens)。分子序列分析結果顯示,在陸寄居蟹屬(Coenobita)之中,形態特徵與演化適應之間有明顯而直接的相關性。另一方面,陸寄居蟹的相近物種之間,一直存在著分類與鑑種的難題。本論文提供分子遺傳距離之數據分析,以重新檢驗並明確定義適合用來分類的形態特徵,以供未來其他相關研究之用。在陸寄居蟹演化之議題上,本研究之分析結果異於過去甲殼類學家所堅信之「由海濱到內陸」的演化方向;陸寄居蟹之陸棲適應演化另闢一條極其特殊之「由內陸至海濱」路徑。 | zh_TW |
dc.description.abstract | Terrestrial hermit crabs are represented by the Coenobitidae, which includes only two genera, Birgus and Coenobita. Coconut crabs (Birgus) are among the world’s largest terrestrial arthropods, having a crab-like morphology and a strongly calcified exoskeleton. The shell-carrying terrestrial hermit crabs (Coenobita), in contrast, have depended on gastropod shells for protection and as an aid in respiration. The asymmetrical pleons of terrestrial hermit crabs have been considered an evidence of marine hermit crab ancestry. Shell-carrying has constrained the morphological evolution of hermit crabs by requiring a decalcified asymmetrical pleon capable of coiling into gastropod shells. The target purpose of this work is to explore the species identification, phylogenetic relationships and evolutionary processes of terrestrial hermit crabs based on the morphological and molecular information. Comparative analysis of morphological characters and molecular sequences in a phylogenetic effort efficiently improves the sensitivity and accuracy of evolutionary inference, producing more precise results than single dataset analyses can provide. The partial sequences from the mtDNA COI and 16S rDNA genes of Coenobita species, nine of which are presented here for the first time (C. brevimanus, C. cavipes, C. clypeatus, C. hilgendorfi, C. perlatus, C. pseudorugosus, C. purpureus, C. rugosus, C. violascens), demonstrate how morphological patterns can illuminate the processes of evolutionary transition at the genus scale. Besides, there have been several taxonomic ambiguities among these Coenobita species. We reexamined and reidentified reliable morphological characters for species identification by referring to the patristic distances between each species. And, most important of all, we present evidences of molecular and morphological studies that the evolutionary route of terrestrial adaptation in the Coenobita phylogeny was from the inland to the shore, and not, as some carcinologists would have believed, gradually from the shore to the inland. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:26:39Z (GMT). No. of bitstreams: 1 ntu-97-R95b45006-1.pdf: 2563126 bytes, checksum: a826dc6f59c1622e0bfc8f48141fb2dc (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書 …………………………………………… I
ACKNOWLEDGEMENTS …………………………………………… II 中文摘要 ……………………………………………………… IV ABSTRACT ……………………………………………………… V 目錄(TABLE OF CONTENTS)………………………………… VII CHAPTER 1. INTRODUCTION ………………………………… 1 1.1. Overview ………………………………………… 1 1.2. Terrestrial hermit crabs …………………… 2 1.3. Mitochondrial DNA sequences ………………… 3 1.4. Phylogenetic and evolutionary analysis … 4 1.5. Purpose of study ……………………………… 4 CHAPTER 2. MATERIALS AND METHODS …………………… 6 2.1. Tissues and data collection ……………………… 6 2.2. Morphological taxonomy …………………………… 8 2.3. Species delimitation ……………………………… 21 2.4. Phylogenetic analysis ……………………………… 24 CHAPTER 3. RESULTS ……………………………………… 33 3.1. Species delimitation ……………………………… 33 3.2. Phylogenetic analysis ……………………………… 37 CHAPTER 4. DISCUSSION …………………………………… 42 4.1. Species delimitation ……………………………… 42 4.2. Phylogenetic analysis ……………………………… 45 CHAPTER 5. CONCLUSIONS ………………………………… 48 REFERENCES …………………………………………………… 51 APPENDIXE I ………………………………………………… 57 APPENDIXE II ………………………………………………… 64 APPENDIXE III ……………………………………………… 70 APPENDIXE IV ………………………………………………… 76 APPENDIXE V ………………………………………………… 79 APPENDIXE VI ………………………………………………… 82 APPENDIXE VII ……………………………………………… 86 APPENDIXE VIII ……………………………………………… 92 | |
dc.language.iso | zh-TW | |
dc.title | 形態與分子證據闡述陸寄居蟹屬(Coenobita)之階段性陸棲演化與物種分類鑑定 | zh_TW |
dc.title | Morphological and Molecular Evidence for a Stepwise Terrestrial Evolution and Species Delimitation on the Coenobita Phylogeny | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 丁雲源(Yun-Yuen Tin),邱郁文(Yuh-Wen Chiu) | |
dc.subject.keyword | Coenobita,COI,16S rDNA,陸寄居蟹,演化,鑑種,親緣關係, | zh_TW |
dc.subject.keyword | Coenobita,COI,16S rDNA,terrestrial hermit crab,evolution,species identification,phylogenetic relationship, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。