Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37321
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorSharon Chenen
dc.contributor.author陳劭昀zh_TW
dc.date.accessioned2021-06-13T15:24:22Z-
dc.date.available2011-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citation1. Agarwal, B. D.*; Broutman, L. G. Analysis and Performance of Fiber
Composites. Wiley: New York, 1980.
2. Ajayan, P.M.*, et al., Single-walled carbon nanotube-polymer composites: Strength and weakness. Advanced Materials, 2000. 12(10): p. 750-757.
3. Ajayan, P.M.*, et al., Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite. Science, 1994, 265(5176): p. 1212-1214.
4. Baur, J.* and Silverman, E. Challenges and Opportunities in Multifunctional Nanocomposite Structures for Aerospace Applications. MRS Bulletin, 2007. 32, pp. 328-334 <www.mrs.org/bulletin>
5. Blau, W.J.*, &Eacute;imh&iacute;n M. N&iacute; Mhuircheartaigh, Silvia Giordani, Linear and Nonlinear Optical Characterization of a Tetraphenylporphyrin-Carbon Nanotube Composite System, J. Phys. Chem. B, 2006. 110(46) pp 23136 – 23141,
6. Bonnet, P.*, et al., Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters, 2007. 91(20)
7. Carroll, D. L.*, Levi, N., Czerw, R., Xing, S.Y., Lyer, P., Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Letters, 2004. 4(7): p. 1267-1271.
8. Chen, Q.*, Xu, M., Zhang, T., Gu, B., Wu, J., Synthesis and Properties of Novel Polyurethane-Urea/Multiwalled Carbon Nanotube Composites Macromolecules, 2006. 39(16), 3540-3545
9. Chou, T. W.*, Thostenson, E. T., and Li, C. Y. Nanocomposites in context. Composites Science and Technology, 2005. 65 (3-4): 491-516.
10. Choi, E.S.*, et al., Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics, 2003. 94(9): p. 6034-6039
11. Chu, B.*, Chen, X. M., Burger, C., Fang, D., Sics, I., Wang, X.F., He, W.D., Somani, R.H., Yoon, K.H., Hsiao, B.S., In-Situ X-ray Deformation Study of Fluorinated Multiwalled Carbon Nanotube and Fluorinated Ethylene-Propylene Nanocomposite Fibers Macromolecules, 2006. 39(16), 5427-5437
12. Dierking, I.*, G. Scalia, P. Morales, and D. LeClere. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Advanced Materials, 2004. 16 (11): 865-869.
13. Duann, Y.F.*, Liu, T.M., Cheng, K.C., Su, W.F., Thermal stability of some naphthalene- and phenyl-based epoxy resins, Polymer Degradation and Stability, 2004. 84, 305-310.
14. Duswalt, A.A.*, The practice of obtaining kinetic data by differential scanning calorimetry. Thermochim Acta 1974. 8: 57–68.
15. Ellison, M.D.* and Gasda, P.J., Functionalization of single-walled carbon nanotubes with 1,4-benzenediamine using a diazonium reaction. Journal of Physical Chemistry C, 2008. 112(3): p. 738-740.
16. Gun'ko, Y.K.*, Hayden, H., and T.S. Perova, Chemical modification of multi-walled carbon nanotubes using a tetrazine derivative. Chemical Physics Letters, 2007. 435(1-3): p. 84-89.
17. Haddon, R. C.*, S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, and M. E. Itkis., Chemistry of Single-Walled Carbon Nanotubes Acc. Chem. Res., 2002. 35 (12): 1105 -1113.
18. Harsch, M.*, J. Karger-Kocsis, and M. Holst, Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin. European Polymer Journal, 2007. 43(4): p. 1168-1178.
19. Iijima, S.*, Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.
20. Islam, M.F.*, et al., High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 2003. 3(2): p. 269-273.
21. Jang, J.*, Bae, J., and S.H. Yoon, Cure Behavior of the liquid-crystalline epoxy/carbon nanotube system and the effect of surface treatment of carbon fillers on cure reaction. Macromolecular Chemistry and Physics, 2002. 203(15): p. 2196-2204.
22. Je′roˆme, R.*, Thomassin, J.M., Lou, X.D., Pagnoulle, C., Saib, A., Bednarz, L., Huynen, I., and Detrembleur, C., Multiwalled Carbon Nanotube/Poly(E-caprolactone) Nanocomposites with Exceptional Electromagnetic Interference Shielding Properties J. Phys. Chem. C, 2007. 111, 11186-11192
23. Jo, W.H.*, and Kim, K.H., Synthesis of Polythiophene-graft-PMMA and Its Role as Compatibilizer for Poly(styrene-co-acrylonitrile)/MWCNT Nanocomposites, Macromolecules, 2007. 40(10), pp 3708 - 3713
24. Kamal, M.R.* and S. Sourour, Kinetics and Thermal Characterization of Thermoset Cure. Polymer Engineering and Science, 1973. 13(1): p. 59-64.
25. Keenan, M.R.*, Autocatalytic Cure Kinetics from DSD Measurements - Zero Initial Cure Rate. Journal of Applied Polymer Science, 1987. 33(5): p. 1725-1734.
26. Kenny, J.M.*, Determination of Autocatalytic Kinetic-Model Parameters Describing Thermoset Cure. Journal of Applied Polymer Science, 1994. 51(4): p. 761-764.
27. Kissinger, H.E.*, Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 1957. 29(11): p. 1702-1706.
28. Liu, C.H.*, Huang, H., Wu, Y., Fan, S.S., Aligned carbon nanotube composite films for thermal management. Advanced Materials, 2005. 17(13): p. 1652-1656.
29. Ma, C.C.*, Yuen, S.M., Chiang, C.L., Chang, J.A., Huang, S.W., Chen, S.C., Chuang, C.Y., Yang, C.C., Wei, M.H., Silane-modified MWCNT/PMMA composites – Preparation,electrical resistivity, thermal conductivity and thermal stability Composites: Part A, 2007. 38, 2527–2535
30. Mallick, P. K.* Fiber-Reinforced Composites; Marcel Dekker: New York, 1993.
31. Mu1ller, A.J.*, Trujillo, M., Arnal, M.L., Thermal and Morphological Characterization of Nanocomposites Prepared by in-Situ Polymerization of High-Density Polyethylene on Carbon Nanotubes Macromolecules, 2007. 40, 6268-6276
32. Ozawa, T.*, A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 1965. 38(11): p. 1881-&.
33. Pierard, N.*, Fonseca, A., Colomer, J.F., Bossuot, C., Benoit, J.M., Tendeloo, G.V., Pirard, J.P., Nagy, J.B., Ball milling effect on the structure of single-wall carbon nanotubes. Carbon, 2004. 42(8-9): p. 1691-1697.
34. Prato, M.*, Georgakilas, V., Kordatos, K., Guldi, D.M., Holzinger, M., Hirsch, A., Organic functionalization of carbon nanotubes. Journal of the American Chemical Society, 2002. 124(5): p. 760-761.
35. Prime, R.B.*, Differential Scanning Calorimetry of Epoxy Cure Reaction. Polymer Engineering and Science, 1973. 13(5): p. 365-371.
36. Puglia, D.*, Valentini, L., and Kenny, J.M., Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. Journal of Applied Polymer Science, 2003. 88(2): p. 452-458.
37. Regev, O.*, et al., Preparation of conductive nanotube-polymer composites using latex technology. Advanced Materials, 2004. 16(3): p. 248-252.
38. Reneker, D.H.*, Ge, J.J., Hou, H.Q., Li, Q., Graham, M.J., Greiner, A., Harris, F.W., and Cheng, Z. D., Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments: Electrospun Composite Nanofiber Sheets, J. Am. Chem. Soc. 2004, 126, 15754-15761
39. Sato, Y.*, et al., Purification of MWNTs combining wet grinding, hydrothermal treatment, and oxidation. Journal of Physical Chemistry B, 2001. 105(17): p. 3387-3392.
40. Sato, Y.*, Ogino, S.I., Yamamoto, G., Sasamori, K., Kimura, H., Hashida, T., Motomiya, K., Jeyadevan, B., and Tohji, K. Relation of the Number of Cross-Links and Mechanical Properties of Multi-Walled Carbon Nanotube Films Formed by a Dehydration Condensation Reaction J. Phys. Chem. B, 2006. 110, 23159-23163
41. Schadler, L.S.*, Ajayan, P. M., Giannaris, C., Rubio, A., Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness, Advanced Materials, 2000. Vol 12, (10) 750-753
42. Smalley, R.E.*, Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Schmidt, J., Talmon, Y., Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters, 2003. 3(10): p. 1379-1382.
43. Stoddardt, J.F.*, Star, A., Liu, Y., Grant, K., Ridvan, L., Steuerman, D.W., Diehl, M.R., Boukai, A., Heath, J.R., Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules, 2003. 36(3): p. 553-560.
44. Su, W.F.*, Chen, C.W.*, Lin, Y.Y., Chu, T.H., Lin, C.C., Ku, C.H., Wu, J.J., Chen, C.H., Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes. Journal of Materials Chemistry, 2007. 17(43): p. 4571-4576.
45. Su, W.F.*, Chen, C.W., Zeng, T.W., Lin, Y.Y., Lo, H.H., Chen, C.H., Liou, S.C., Huang, H.Y. A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices, Nanotechnology, 2006. 17(21): p. 5387-5392.
46. Su, W.F.*, Huang, H.W., Pan, W.P., Thermal properties of rigid rod epoxies cured with diaminodiphenylsulfone and dicyandiamide, Thermochimica Acta, 2002., 7013, 391-394.
47. Su, W-F.A.*, Chen, K.C., Tseng, S.Y., Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins, Journal of Applied Polymer Science, 2000. Vol.78, 446-451.
48. Su, W-F.A.*, Thermoplastic and Thermoset Main Chain Liquid Crystal Polymers Prepared from Biphenyl Mesogen, Journal of Polymer Science: Part A: Chemistry, 1993. Vol.31, 3251-3256.
49. Thomas, E.L.*, and Sabba, Y., High-Concentration Dispersion of Single-Wall Carbon Nanotubes, Macromolecules, 2004. 37(13), pp 4815 - 4820
50. Thostenson, E.T.*, C.Y. Li, and T.W. Chou, Nanocomposites in context. Composites Science and Technology, 2005. 65(3-4): p. 491-516.
51. Torkelson, J.M.*, Andrew H. Lebovitz, Klementina Khait, Stabilization of Dispersed Phase to Static Coarsening: Polymer Blend Compatibilization via Solid-State Shear Pulverization, Macromolecules, 2002. 35(23) pp 8672 - 8675; (Communication to the Editor)
52. Tour, J.M.*, Dyke, C.A., Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chemistry-a European Journal, 2004. 10(4): p. 813-817.
53. Tour, J.M.*, Dyke, C.A., Solvent-free functionalization of carbon nanotubes. Journal of the American Chemical Society, 2003. 125(5): p. 1156-1157.
54. Tour, J.M.*, Smalley*, R.E., Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem. Commun., 2001. 193
55. Winey, K.I.*, Reto Haggenmueller, Csaba Guthy, Jennifer R. Lukes, John E. Fischer, Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity, Macromolecules, 2007. 40(7) pp 2417 - 2421
56. Winey, K.I.*, Haggenmueller, R., J.E. Fischer, and, Single wall carbon nanotube/polyethylene nanocomposites: Nucleating and templating polyethylene crystallites. Macromolecules, 2006. 39(8): p. 2964-2971.
57. Winey, K.I.*, Moniruzzaman, M. Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006. 39(16): p. 5194-5205.
58. Winey, K.I.*, Haggenmueller, R., Zhou, W., Fischer, J.E., Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2003. 3(1-2): p. 105-110.
59. Wang, S.R.*, Liang, Z.Y., Liu, T., Wang, B., Zhang, C., Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology, 2006. 17(6): p. 1551-1557.
60. Wu, T.M.*, Chen, E.C., Isothermal and Nonisothermal Crystallization Kinetics of Nylon 6/Functionalized Multi-Walled Carbon Nanotube Composites Journal of Polymer Science: Part B: Polymer Physics, 2008. Vol. 46, 158–169
61. Xia, H.*, Qi Wang, Kanshe Li, Guo-Hua Hu Preparation of Polypropylene/Carbon Nanotube Composite Powder with a Solid-State Mechanochemical Pulverization Process Journal of Applied Polymer Science, 2004. Vol. 93, 378–386
62. Xie, H.F.*, Liu, B.H., Yuan, Z.R., Shen, J.Y., Cheng, R.S., Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry. Journal of Polymer Science Part B-Polymer Physics, 2004. 42(20): p. 3701-3712.
63. Yin, M.*, et al., Characterization of Carbon Microfibers as a Reinforcement for Epoxy-Resins. Chemistry of Materials, 1993. 5(7): p. 1024-1031.
64. Yang, Y.L.*, Lu, H.B.*, Xie, L., Xu, F., and Qiu, F., Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites, Macromolecules, 2007. 40 3296-3305.
65. Zhang, C.*, Qiu, J.J., Wang, B., and Liang, R., Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 2007. 18(27): p. -.
66. Zhou, O.*, H.Z. Geng, R. Rosen, B. Zheng, H. Shimoda, L. Fleming, J. Liu, Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes, Advanced Materials, 2002. Vol 14, Iss. 19, 1387-1390.
67. Zhu, J.*, et al., Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Advanced Functional Materials, 2004. 14(7): p. 643-648.
68. Zhu, J.*, et al., Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Letters, 2003. 3(8): p. 1107-1113.
69. Zumbrunnen, D.A.*, et al., Chaotic advection as a means to develop nanoscale structures in viscous melts. Nano Letters, 2002. 2(10): p. 1143-1148.
70. 黃建睿,“液晶型環氧樹脂硬化反應動力學與性質研究”, 2007
71. Boeing Inc., http://www.boeing.com/commercial/787family/background.html, 2008
72. International Energy Agency, World Energy Outlook http://www.worldenergyoutlook.org/2007.asp 2007
73. Manufacturing.net. http://www.manufacturing.net/News-Aerospace-Industry-Seeks-Solutions-To-Rising-Oil-Costs.aspx, 2008
74. Sigma-Aldrich www.sigma-aldrich.com, 2008
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37321-
dc.description.abstract本研究目的在於製備一種具有高強度且質輕的航空材料─液晶型環氧樹脂混摻奈米碳管,並對其性質作一系列的探討。
奈米碳管首先經過酸洗處理後,再藉由環氧樹脂加以表面改質,接著利用傅立葉紅外線光譜儀、拉曼光譜儀與穿透式電子顯微鏡進行分析,發現經過改質後的奈米碳管,可以幫助克服碳管之間的凡德瓦力,避免碳管聚集而達到在高分子中均勻分散的目的。
在本研究中將套用數種動力學模型來模擬奈米複合材料的硬化反應。由動力學的研究中可以發現,隨著奈米碳管濃度增加,其熱傳導性質會跟著提升,同時反應速率會隨之增加,因而使得活化能下降。
硬化後的奈米複合材料分別利用熱差掃描計、熱機械分析儀、熱重分析儀、動態機械分析儀以及微硬度測試來分析其熱性質與機械性質。隨著奈米碳管的加入,此複合材料的性質有顯著提升。添加了最佳量2.00 wt%的奈米碳管後,玻璃轉移溫度提升了33.4°C、熱裂解溫度增加了13.8°C、儲存模數增加了15.27% 、tan δ的溫度峰值增加了64.6°C而微硬度則增加了63.3%。由光學與電子顯微鏡的研究中可發現添加奈米碳管後,無論是在液晶相的形成與分支結構的排列中,皆有相當程度的影響。這個結果可用以解釋奈米碳管和液晶環氧樹脂做成的奈米複合材料具有較佳的熱性質及機械性質。
而再高的奈米碳管添加量並未能更進一步增加此複合材料的性質,因為添加了更多量的奈米碳管將使得玻璃化現象提前,且使分子的運動受到限制而導致反應提早進入熱擴散控制階段。而當分子的運動被侷限住,硬化的程度及性質表現將會較預期的來得低,並且需要較長的反應時間以達到完全硬化。
zh_TW
dc.description.abstractThis research focuses on the fabrication and the characterization of carbon nanotubes-liquid crystalline epoxy resin nanocomposites for strong and lightweight aerospace structural applications. The carbon nanotubes (CNTs) are first acid washed and then functionalized with epoxy resins. Functionalized CNTs are characterized by Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy and Transmission Electron Microscopy (TEM) and are found to help disrupt the strong van der Waals force between the nanotubes and prevents them from bundling together for homogeneous dispersion in the polymer matrix.
Several kinetic models are employed to study the curing behaviors of the nanocomposites. From the kinetic study, we find that the reaction rate increases and the activation energy decreases with increasing concentrations of carbon nanotubes and this arises from the high thermal conductivity of the carbon nanotubes.
Differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and microhardness tests are applied to characterize the cured nanocomposite materials. The material properties are enhanced by the carbon nanotubes. 2.00 wt% CNT increases the glass transition temperature by 33.4°C, the decomposition temperature by 13.8°C, storage modulus by 15.27%, peak temperature of the tan δ by 64.6°C and the microhardness by 63.3%. The improvements of thermal and mechanical properties of carbon nanotube reinforced liquid crystalline epoxy resin nanocomposites may be explained by the aligned and branched structures observed in optical and electronic microscopy study.
Higher CNT concentrations do not further improve the material’s properties because the accelerating effect of CNTs also antedates the vitrification and turns the reaction to diffusion control driven. As the molecular motions are limited, the degree of cure is lower than expected and the samples would require longer curing time.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:24:22Z (GMT). No. of bitstreams: 1
ntu-97-R95527064-1.pdf: 3404414 bytes, checksum: b029cadf62137f66a8c9881341f135ad (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of Contents
致謝 I
Abstract III
中文摘要 V
Table of Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1 Background Introduction 1
1.2 Motivation 2
1.3 Research Direction 3
Chapter 2 Literature Review 4
2.1 Brief Introduction on Liquid Crystalline Epoxy Resin 4
2.2 Brief Introduction on Carbon Nanotubes 6
2.3 Carbon Nanotubes Based Nanocomposites 9
2.4 Carbon Nanotubes Suspensions and Functionalization 10
2.5 Carbon Nanotubes/Polymer Composites Fabrication 14
2.5.1 Solution blending 14
2.5.2 Melt blending 15
2.5.3 In situ polymerization 17
2.5.4 Other methods 19
2.6 Alignment of Nanotubes in Polymer Composites 20
2.7 Effect of Fillers and Additives on Nanotube/Polymer Composite Curing Behaviours 21
2.8 Kinetics Study of Carbon Nanotubes/Polymer Composites 24
2.9 Mechanical Properties of Carbon Nanotubes/Polymer Composites 25
2.10 Thermal Properties of Carbon nanotubes/Polymer Composites 27
Chapter 3 Experimental 30
3.1 Chemicals 30
3.2 Instruments 31
3.3 Experimental Process 32
3.3.1 Synthesis of 4,4’-dihydroxy benzylideneaniline (DHBA) 32
3.3.2 Synthesis of 4,4’-bis(2,3-epoxypropoxy)benzylideneaniline (AM) 32
3.3.3 Synthesis of 4,4’-bis(2,3-epoxypropoxy)biphenyl (BP) 33
3.3.4 Carboxylation of multi-walled carbon nanotubes 34
3.3.5 Functionalization with epoxide of multi-walled carbon nanotubes 34
3.3.6 Preparation of epoxy-carbon nanotubes nanocomposites 36
3.3.7 Bulk nanocomposite sample preparation 36
3.3.8 Preparation of epoxy- TiO2 nanorods nanocomposites 36
3.4 Sample Analysis 37
3.4.1 Polarized Optical Microscope (POM) Analysis 37
3.4.2 Thermogravimetric Analysis (TGA) 37
3.4.3 Differential Scanning Calorimetry (DSC) Analysis 38
3.4.4 Thermomechanical Analysis (TMA) 39
3.4.5 Dynamic Mechanical Analysis (DMA) 39
3.4.6 Microhardness Test 40
Chapter 4 Results and Discussion 41
4.1 Carbon Nanotubes Functionalization Characterization 41
4.2 POM Study 45
4.2.1 BP Systems 45
4.2.2 AM Systems 48
4.3 Dynamic Kinetic Study 51
4.3.1 Dynamic Kinetic Model 51
4.3.2 AM/CNT Nanocomposite 52
4.3.3 BP/CNT Nanocomposite 57
4.3.4 BP/TiO2 nanorod Nanocomposite 60
4.4 Isothermal Study of the Curing Kinetic 62
4.4.1 Isothermal Kinetic Model 62
4.4.2 AM/CNT Nanocomposite 64
4.4.3 BP/CNT Nanocomposite 75
4.5 Modeling the Curing Behaviors 82
4.6 Characterizations of the Carbon Nanotube/Epoxy Resin Nanocomposites 83
4.6.1 Microscopy Analysis 83
4.6.2 DSC Analysis 84
4.6.3 TMA Analysis 85
4.6.4 TGA Analysis 87
4.6.5 DMA Analysis 88
4.6.6 Microhardness Analysis 89
Chapter 5 Conclusions 91
Chapter 6 Recommendations 93
Chapter 7 References 94
dc.language.isoen
dc.title液晶型環氧樹脂混掺多壁奈米碳管
複合材料之製備及研究
zh_TW
dc.titleLiquid Crystalline Epoxy Resins /
Multi-Walled Carbon Nanotube Nanocomposite:
Synthesis and Characterizations
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),林金福(King-Fu Lin),陳文章(Wen-Chang Chen)
dc.subject.keyword液晶,環氧樹脂,奈米碳管,奈米複合材料,導熱性,硬化反應動力學,zh_TW
dc.subject.keywordliquid crystalline,epoxy resin,carbon nanotubes,nanocomposites,thermal conductivity,curing kinetics,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2008-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved