請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37315
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張淑媛 | |
dc.contributor.author | Ching-Yu Lin | en |
dc.contributor.author | 林景煜 | zh_TW |
dc.date.accessioned | 2021-06-13T15:24:12Z | - |
dc.date.available | 2009-08-14 | |
dc.date.copyright | 2008-08-14 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-22 | |
dc.identifier.citation | Abed, Y., et al., Divergent evolution of hemagglutinin and neuraminidase genes in recent influenza A:H3N2 viruses isolated in Canada. J Med Virol, 2002. 67(4): p. 589-95.
Ali, A., et al., Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol, 2000. 74(18): p. 8709-19. Barrett, T., A.J. Wolstenholme, and B.W. Mahy, Transcription and replication of influenza virus RNA. Virology, 1979. 98(1): p. 211-25. Bullough, P.A., et al., Crystals of a fragment of influenza haemagglutinin in the low pH induced conformation. J Mol Biol, 1994. 236(4): p. 1262-5. Caton, A.J., et al., The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell, 1982. 31(2 Pt 1): p. 417-27. Chen, W., et al., A novel influenza A virus mitochondrial protein that induces cell death. Nat Med, 2001. 7(12): p. 1306-12. Chutinimitkul, S., et al., Molecular characterization and phylogenetic analysis of H1N1 and H3N2 human influenza A viruses among infants and children in Thailand. Virus Res, 2008. 132(1-2): p. 122-31. Colman, P.M., J.N. Varghese, and W.G. Laver, Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature, 1983. 303(5912): p. 41-4. Falcon, A.M., et al., Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. J Virol, 2004. 78(8): p. 3880-8. Fleischer, B., H. Becht, and R. Rott, Recognition of viral antigens by human influenza A virus-specific T lymphocyte clones. J Immunol, 1985. 135(4): p. 2800-4. Govorkova, E.A., et al., Neuraminidase inhibitor-rimantadine combinations exert additive and synergistic anti-influenza virus effects in MDCK cells. Antimicrob Agents Chemother, 2004. 48(12): p. 4855-63. Govorkova, E.A., et al., Comparison of efficacies of RWJ-270201, zanamivir, and oseltamivir against H5N1, H9N2, and other avian influenza viruses. Antimicrob Agents Chemother, 2001. 45(10): p. 2723-32. Hardy, I., et al., Molecular evolution of influenza A/H3N2 viruses in the province of Quebec (Canada) during the 1997-2000 period. Virus Res, 2001. 77(1): p. 89-96. Hatada, E., S. Saito, and R. Fukuda, Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J Virol, 1999. 73(3): p. 2425-33. Hay, A.J., et al., Influenza virus messenger RNAs are incomplete transcripts of the genome RNAs. Nucleic Acids Res, 1977. 4(12): p. 4197-209. Hoffmann, E., et al., A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A, 2000. 97(11): p. 6108-13. Hoffmann, E., et al., Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 2001. 146(12): p. 2275-89. Huang, I.C., et al., Influenza A virus neuraminidase limits viral superinfection. J Virol, 2008. 82(10): p. 4834-43. Ison, M.G. and F.G. Hayden, Therapeutic options for the management of influenza. Curr Opin Pharmacol, 2001. 1(5): p. 482-90. Kawaoka, Y., S. Krauss, and R.G. Webster, Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol, 1989. 63(11): p. 4603-8. Kawaoka, Y. and R.G. Webster, Interplay between carbohydrate in the stalk and the length of the connecting peptide determines the cleavability of influenza virus hemagglutinin. J Virol, 1989. 63(8): p. 3296-300. Kiso, M., et al., Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet, 2004. 364(9436): p. 759-65. Klenk, H.D., et al., Activation of influenza A viruses by trypsin treatment. Virology, 1975. 68(2): p. 426-39. Kobasa, D., et al., Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature, 2004. 431(7009): p. 703-7. Martin, K. and A. Helenius, Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell, 1991. 67(1): p. 117-30. Martin-Benito, J., et al., Three-dimensional reconstruction of a recombinant influenza virus ribonucleoprotein particle. EMBO Rep, 2001. 2(4): p. 313-7. Martinez, C., et al., Evolution of the influenza virus neuraminidase gene during drift of the N2 subtype. Virology, 1983. 130(2): p. 539-45. Matrosovich, M.N., et al., Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology, 1997. 233(1): p. 224-34. Matrosovich, M.N., et al., Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4620-4. Mazur, I., et al., The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol, 2008. 10(5): p. 1140-52. McAuley, J.L., et al., Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe, 2007. 2(4): p. 240-9. McKimm-Breschkin, J.L., Management of influenza virus infections with neuraminidase inhibitors: detection, incidence, and implications of drug resistance. Treat Respir Med, 2005. 4(2): p. 107-16. McKimm-Breschkin, J.L., Resistance of influenza viruses to neuraminidase inhibitors--a review. Antiviral Res, 2000. 47(1): p. 1-17. Monto, A.S., The role of antivirals in the control of influenza. Vaccine, 2003. 21(16): p. 1796-800. Morishima, T., et al., Encephalitis and encephalopathy associated with an influenza epidemic in Japan. Clin Infect Dis, 2002. 35(5): p. 512-7. Nemeroff, M.E., et al., Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol Cell, 1998. 1(7): p. 991-1000. Ohuchi, M., et al., Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect, 2006. 8(5): p. 1287-93. Palese, P., Influenza: old and new threats. Nat Med, 2004. 10(12 Suppl): p. S82-7. Palese, P. and R.W. Compans, Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol, 1976. 33(1): p. 159-63. Palese, P., et al., Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology, 1974. 59(2): p. 490-8. Palese, P., et al., Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 1974. 61(2): p. 397-410. Pappas, C., et al., Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc Natl Acad Sci U S A, 2008. 105(8): p. 3064-9. Peltola, V., T. Ziegler, and O. Ruuskanen, Influenza A and B virus infections in children. Clin Infect Dis, 2003. 36(3): p. 299-305. Pinto, L.H. and R.A. Lamb, Understanding the mechanism of action of the anti-influenza virus drug amantadine. Trends Microbiol, 1995. 3(7): p. 271. Plotch, S.J., et al., A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 1981. 23(3): p. 847-58. Rambaut, A., et al., The genomic and epidemiological dynamics of human influenza A virus. Nature, 2008. 453(7195): p. 615-9. Rudneva, I.A., et al., Influenza A virus reassortants with surface glycoprotein genes of the avian parent viruses: effects of HA and NA gene combinations on virus aggregation. Arch Virol, 1993. 133(3-4): p. 437-50. Saito, T., G. Taylor, and R.G. Webster, Steps in maturation of influenza A virus neuraminidase. J Virol, 1995. 69(8): p. 5011-7. Smith, B.J., et al., Structural studies of the resistance of influenza virus neuramindase to inhibitors. J Med Chem, 2002. 45(11): p. 2207-12. Stoll, V., et al., Influenza neuraminidase inhibitors: structure-based design of a novel inhibitor series. Biochemistry, 2003. 42(3): p. 718-27. Taubenberger, J.K., et al., Initial genetic characterization of the 1918 'Spanish' influenza virus. Science, 1997. 275(5307): p. 1793-6. Thacker, S.B., The persistence of influenza A in human populations. Epidemiol Rev, 1986. 8: p. 129-42. Tobita, K., et al., Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol, 1975. 162(1): p. 9-14. Tompkins, S.M., et al., Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A, 2004. 101(23): p. 8682-6. Verhoeyen, M., et al., Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature, 1980. 286(5775): p. 771-6. Wagner, R., M. Matrosovich, and H.D. Klenk, Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol, 2002. 12(3): p. 159-66. Wagner, R., et al., Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol, 2000. 74(14): p. 6316-23. Weis, W., et al., Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature, 1988. 333(6172): p. 426-31. Wharton, S.A., et al., Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol, 1994. 75 ( Pt 4): p. 945-8. Whittaker, G., M. Bui, and A. Helenius, Nuclear trafficking of influenza virus ribonuleoproteins in heterokaryons. J Virol, 1996. 70(5): p. 2743-56. Wilson, I.A., J.J. Skehel, and D.C. Wiley, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature, 1981. 289(5796): p. 366-73. Xu, X., et al., Genetic variation in neuraminidase genes of influenza A (H3N2) viruses. Virology, 1996. 224(1): p. 175-83. Ye, Z., et al., Association of influenza virus matrix protein with ribonucleoproteins. J Virol, 1999. 73(9): p. 7467-73. Yen, H.L., et al., Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J Virol, 2006. 80(17): p. 8787-95. Zamarin, D., et al., Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog, 2005. 1(1): p. e4. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37315 | - |
dc.description.abstract | 流行性感冒是由流感病毒(Influenza virus)所引起的呼吸道疾病,典型症狀包含發燒、頭痛、咳嗽、四肢無力、咽喉炎及鼻炎等,嚴重者甚至死亡;近來因為疫苗以及藥物的使用,對於疾病的預防及治療有著顯著功效。
2007 年一月到十月由台大檢驗醫學部所分離出的H3N2流感病毒,經過高全良老師實驗室針對這些病毒的神經胺酸酶(Neuraminidase,NA)基因定序後,發現這些檢體大致上可依核酸序列分為兩個群體:Group I (2007 年一、二月份所分離出的檢體)及GroupII (其他月份所分離出的檢體),這兩個群體在胺基酸位點 86、93、194、296、307、310、335、370、372、387有差異,並且這些差異是群體特異(Group specific)的。經過結構分析,我們推測335/387、370/372 這兩組胺基酸位點的改變可能會影響神經胺酸酶的構形。我們發現原始病毒(parental virus) Grou I神經胺酸酶的活性較Group II低,且在溶斑實驗中,Group I形成小溶斑的比例較高。為了解前後期檢體神經胺酸酶胺基酸序列改變是否影響病毒的表現型,我們利用反遺傳學(reverse genetics)製備僅在神經胺酸酶基因有差異的兩重組病毒(Group I:754;Group II:4517)。進一步測量重組病毒(recombinant virus)神經胺酸酶活性、生長曲線、以及對於藥物的感受性,我們發現:兩重組病毒神經胺酸酶活性差距較原始病毒為小;雖然病毒生長速率均小於原始病毒十至一百倍,但兩者在低MOI下的生長速率沒差別;在藥物的感受性實驗中,754 重組病毒較4517 重組病毒對於NHRI藥物(BPR2P000150)為敏感;2-deoxy-2,3-didehydro-D-N- acetylneuraminic acid (DANA) 抑制754病毒50%溶斑所需濃度(EC50)在原始或重組病毒中均大於4517 檢體3~5 倍。 綜合以上實驗,這些變異可能導致神經胺酸酶的結構產生差異並影響到病毒的生長速率以及對藥物的感受性。我們將更進一步探討造成神經胺酸酶活性以及藥物敏感性差異的位點,希望藉由這些資訊可以對神經胺酸酶有更深層的認識。 | zh_TW |
dc.description.abstract | Influenza virus has caused worldwide pandemic every year. Although influenza vaccine and therapeutic compounds have effectively prevented people from being infected, the appearance of natural variants and drug-resistant viruses have become an important issue. Therefore, in this study, we aimed to characterize the natural variants of neuraminidase (NA) diverse in H3N2 collected at National Taiwan University
Hospital in 2007. From January 2007 to October, the NA genes of H3N2 influenza virus strains isolated from Department of Laboratory Medicine, National Taiwan University were sequenced by Dr. Kao’s laboratory. By phylogenetic analysis, these genesequence were separated into two groups – Group I (mainly composed of the virus strains isolated in January and February) and Group II (composed of the virus strains isolated in later time period). Some group-specific amino acid changes were identified at residues 86, 93, 194, 296, 307, 310, 335, 370, 372 and 387. Among these, residue changes at 335/387 and 370/372 are speculated to affect the protein conformation by protein structural prediction. The NA activity of Group I strains is lower than that of Group II strains and small plaque percentage in Group I is higher than that of Group II. To understand whether these genotype variations did correlate with the phenotype changes, reverse genetics was performed to analyze the differences of NA gene from Group I (754) and Group II (4517). Comparison of enzyme activity, and virus growth curve between these two recombinant viruses, we found that Group I virus had lower NA activity, yet similar growth kinetics as compared to Group II virus while both viruses exhibited comparable sensitivity to a compound from NHRI (BPR2P000150) which is not targeted to NA, Group I virus are 3~5 times more resistant to one NA inhibitor, 2-deoxy-2,3-didehydroD-N-acetylneuraminic acid(DANA). Taken together, we speculate that natural variations in NA do exist and some of them may result in phenotypic changes. Further analysis is required to determine the role of specific amino acid change in NA structure and enzyme activity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:24:12Z (GMT). No. of bitstreams: 1 ntu-97-R95424012-1.pdf: 936649 bytes, checksum: 7480816d201596d35f16c2324e2e4826 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目 錄 1
圖表目錄 3 中文摘要 4 英文摘要 5 第一章 緒論 1-1 前言 7 1-2 A型流感病毒構造及病毒蛋白 7 1-3 流感病毒的生長週期 11 1-4 流感病毒流行季節與地理差異 12 1-5 流感病毒的抗原變異及曾引起的大流行 12 1-6 現今使用的抗病毒方法和所面臨的問題 14 1-7 研究目的 15 第二章 實驗材料與方法 2-1 實驗材料 16 2-2 實驗方法 2-2.1 細胞培養 20 2-2.2 病毒 20 2-2.3 神經胺酸酶活性測試(Neuraminidase activity assay) 20 2-2.4 溶斑實驗(Plaque assay) 21 2-2.5 病毒RNA 萃取 22 2-2.6 病毒RNA反轉錄-聚合酶連鎖反應(RT-PCR reaction) 22 2-2.7 轉染實驗(Transfection assay) 23 2-2.8 血球凝集試驗(HA test) 23 2-2.9 病毒生長時程實驗(Virus growth kinetics experiment) 23 2-2.10 MTT 細胞毒性試驗 24 2-2.11 溶斑抑制實驗(Plaque reduction assay) 24 2-2.12本研究所用到的統計方法以及軟體 24 第三章 實驗結果 3-1 病毒核醣核酸反轉錄-聚合酶連鎖反應(RT-PCR 25 3-2 神經胺酸酶結構分析 25 3-3 神經胺酸酶基因選殖 26 3-4 轉染實驗 26 3-5 神經胺酸酶活性測試 26 3-6 病毒生長時程實驗 27 3-7 溶斑抑制實驗 28 3-8 溶斑實驗 28 第四章 討論 29 圖表 35 參考文獻 63 圖表目錄 圖一 2007年H3N2檢體神經胺酸酶定序結果 36 圖二 群體特異胺基酸位點在神經胺酸酶結構上的相對位置 38 圖三 pHW2000、pHW-HA3、pHW-754NA、pHW-4517NA質體示意圖 39 圖四 HA及NA基因的選殖 40 圖五 以溶斑實驗及血球凝集試驗對重組病毒(recombinant virus)定出效價 41 圖六 神經胺酸酶活性測試 42 圖七 病毒生長時程實驗 43 圖八 2-deoxy-2,3-didehydro-D-N-acetylneuraminic acid(DANA)結構示意圖 45 圖九 以溶斑抑制實驗測定原始病毒對於藥物的感受性 46 圖十 以溶斑抑制實驗測定重組病毒對於藥物的感受性 47 圖十一 群體類別與小溶斑比例的關係 48 圖十二 流行性感冒病毒曾引起的大流行 49 圖十三 A型流感病毒(H1N1、H3N2)血球凝集素及神經胺酸酶的變異度 50 圖十四 754以及4517兩檢體HA蛋白序列的比對結果 51 圖十五 754 以及4517 檢體及其他參考病毒株PB1-F2 蛋白的胺基酸序列 52 表一 群體特定(group-specific)改變的胺基酸位點 53 表二 臨床分離病毒株特定(isolate-specific)改變的胺基酸位點 54 表三 以溶斑抑制實驗所測得原始及重組病毒對於藥物的感受性 55 表四 各檢體中所含有小溶斑的比例 56 表五 1968~2007年神經胺酸酶十個位點的變異情形 57 表六 1968~2007年神經胺酸酶上可醣基化位點的變異情形 59 表七 本研究中所使用的引子(primer)名稱以及序列 61 表八 本研究中依引子不同所使用的PCR反應條件 62 | |
dc.language.iso | zh-TW | |
dc.title | 新興流感病毒之神經胺酸酶功能性探討 | zh_TW |
dc.title | Functional characterization of new emerging
influenza NA variants | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李君男,高全良,施信如 | |
dc.subject.keyword | 流感病毒,神經胺酸酶,台灣, | zh_TW |
dc.subject.keyword | Influenza virus,neuraminidase,Taiwan, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-22 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 914.7 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。