Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3730
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林雨德
dc.contributor.authorShu-Hui Kuanen
dc.contributor.author官淑蕙zh_TW
dc.date.accessioned2021-05-13T08:36:16Z-
dc.date.available2018-08-24
dc.date.available2021-05-13T08:36:16Z-
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citationAdolph, E. F. (1931) Body size as a factor in the metamorphosis of tadpoles. Biological Bulletin 61: 376-386.
Alexander, P. S., A. C. Alcala & D. Y. Wu (1979) Annual reproductive pattern in the rice frog <i>Rana l. limnocharis</i> in Taiwan. Journal of Asian Ecology 1: 68-78.
Alexander, P. S., C. M. Chang & C. H. Yang (1963) Reproductive variation in the female frog <i>Rana limnocharis</i> during the spring season in Taiwan. Tunghai University press, Taiwan.
Alford, R. A. & R. N. Harris (1988) Effects of Larval Growth History on Anuran Metamorphosis. The American Naturalist 131: 91-106.
Altwegg, R. & H.-U. Reyer (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57: 872-882.
Alvarez, D. & A. G. Nicieza (2002a) Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecologia 131: 186-195.
Alvarez, D. & A. G. Nicieza (2002b) Effects of temperature and food quality on anuran larval growth and metamorphosis. Functional Ecology 16: 640-648.
Anderson, M. J. & C. T. Braak (2003) Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation 73: 85-113.
Arendt, J. & L. Hoang (2005) Effect of food level and rearing temperature on burst speed and muscle composition of western spadefoot toad (<i>Spea hammondii</i>). Functional Ecology 19: 982-987.
Arendt, J. D. (2006) The cellular basis for phenotypic plasticity of body size in western spadefoot toad (<i>Spea hammondi</i>) tadpoles: patterns of cell growth and recruitment in response to food and temperature manipulations. Biological Journal of the Linnean Society 88: 499-510.
Atkinson, D. (1996) On the solutions to a major life-history puzzle. Oikos 77: 359-365.
Bambaradeniya, C. N. B. & F. P. Amarasinghe (2004) Biodiversity associated with the rice field agroecosystem in Asian countries: a brief review. International Water Management Institute.
Beck, C. W. & J. D. Congdon (2000) Effects of age and size at metamorphosis on performance and metabolic rates of southern toad, <i>Bufo terrestris</i>, metamorphs. Functional Ecology 14: 32-38.
Beebee, T. J. C. (1979) A review of scientific information pertaining to the natterjack toad <i>Bufo calamita</i> throughout its geographical range. Biological Conservation 16: 107-134.
Benard, M. F. (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annual Review of Ecology, Evolution, and Systematics 35: 651-673.
Benavides, A. G., A. Veloso, P. Jimenez & M. A. Mendez (2005) Assimilation efficiency in <i>Bufo spinulosus</i> tadpoles (Anura : Bufonidae): effects of temperature, diet quality and geographic origin. Revista Chilena De Historia Natural 78: 295-302.
Berven, K. A. (1988) Factors affecting variation in reproductive traits within a population of wood frogs (<i>Rana sylvatica</i>). Copeia 1988: 605-615.
Berven, K. A. & D. E. Gill (1983) Interpreting geographic variation in life-history traits. American Zoologist 23: 85-97.
Berven, K. A., D. E. Gill & S. J. Smith-Gill (1979) Countergradient selection in the green frog, <i>Rana clamitans</i>. Evolution 33: 609-623.
Blouin, M. S. & S. T. Brown (2000) Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. Oecologia 125: 358-361.
Brown, H. A. (1990) Temperature, thyroxine, and induced metamorphosis in tadpoles of a primitive frog, <i>Ascaphus truei</i>. General and Comparative Endocrinology 79: 136-146.
Cabrera-Guzman, E., M. R. Crossland, G. P. Brown & R. Shine (2013) Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (<i>Rhinella marina</i>). PLoS ONE 8, e70121.
Castañeda, L. E., P. Sabat, S. P. Gonzalez & R. F. Nespolo (2006) Digestive plasticity in tadpoles of the Chilean giant frog (<i>Caudiverbera caudiverbera</i>): factorial effects of diet and temperature. Physiological and Biochemical Zoology 79: 919-926.
Castano, B., S. Miely, G. R. Smith & J. E. Rettig (2010) Interactive effects of food availability and temperature on wood frog (<i>Rana sylvatica</i>) tadpoles. The Herpetological Journal 20: 209-211.
Chuang, M. F. A. (2006) Oerwintering tadpoles of <i>Rana adenopleura</i> in a subtropical lowland of Taiwan. National Changhua University of Education, Changhua, Taiwan.
Collins, J. P. (1979) Intrapopulation variation in the body size at metamorphosis and timing of metamorphosis in the bull frog, <i>Rana Catesbeiana</i>. Ecology 60: 738-749.
Council of Agriculture (2009) Agricultural statistics yearbook 2008. Council of Agriculture, Taipei, Taiwan.
Dahl, E., G. Orizaola, A. G. Nicieza & A. Laurila (2012) Time constraints and flexibility of growth strategies: geographic variation in catch-up growth responses in amphibian larvae. Journal of Animal Ecology 81: 1233-1243.
Day, T. & L. Rowe (2002) Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. American Naturalist 159: 338-350.
Dubois, A. & A. Ohler (2000) Systematics of <i>Fejervarya limnocharis</i> (Gravenhorst, 1829) (Amphibia, Anura, Ranidae) and related species. 1. Nomenclatural status and type-specimens of the nominal species <i>Rana limnocharis</i> Gravenhorst, 1829. Alytes 18: 15-50.
Edge, C. B., D. G. Thompson & J. E. Houlahan (2013) Differences in the phenotypic mean and variance between two geographically separated populations of wood frog (<i>Lithobates sylvaticus</i>). Evol Biol 40: 276-287.
Gravenhorst, J. L. C. (1829) Deliciae Musei Zoologici Vratislaviensis. Fasciculus Primus, Continens Chelonios et Batrachiae. Sumptibus Leopoldi Vossii. Lipsiae.
Gomez-Mestre, I., V. L. Saccoccio, T. Iijima, E. M. Collins, G. G. Rosenthal & K. M. Warkentin (2010) The shape of things to come: linking developmental plasticity to post-metamorphic morphology in anurans. Journal of Evolutionary Biology 23: 1364-1373.
Gosner, K. L. (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.
Guan, S.-H. (2005) Population genetics of <i>Rana limnocharis</i> analysed by mitochondrial DNA D-loop in Changhua, Taiwan. National Changhua University of Education, Changhua, Taiwan.
Harkey, G. A. & R. D. Semlitsch (1988) Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog <i>Pseudacris ornata</i>. Copeia 1988: 1001-1007.
Harris, R. N. (1999) The anuran tadpole: evolution and maintenance. In: McDiarmid, R. W. & R. Altig (Eds.), Tadpoles: the biology of anuran larvae, pp. 279-294. The University of Chicago Press, Chicago, USA.
Hetherington, T. E. (1988) Metamorphic changes in the middle ear. In: Fritzsch, B., T. E. Hetherington, M. J. Ryan, W. Walkowiad & W. Wilczynski (Eds.), The evolution of the amphibian auditory system, pp. 339-357. Wiley, New York, USA.
Hsu, J.-L., Y.-C. Kam & G. M. Fellers (2012) Overwintering tadpoles and loss of fitness correlates in <i>Polypedates braueri</i> tadpoles that use artificial pools in a lowland agroecosystem. Herpetologica 68: 184-194.
Huang, J.-L. (2004) Anti-predator responses of larval <i>Microhyla ornata</i> and <i>Rana limnocharis</i> to the predator, larval <i>Neurothemis ramburii</i> vers <i>terminnata</i>. National Cheng Kung University, Tainan, Taiwan.
Kaplan, R. H. & C. P. Phillips (2006) Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog <i>Bombina orientalis</i>. Evolution 60: 142¬-156.
Kingsolver, J. G. & R. B. Huey (2008) Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10: 251-268.
Kuan, S.-H. & Y. K. Lin (2011) Bigger or faster? Spring and summer tadpole cohorts use different life-history strategies. Journal of Zoology 285: 165-171.
Kuparinen, A., A. T. Laugen, A. Laurila & J. Merila (2010) Developmental threshold model challenged by temperature. Evolutionary Ecology Research 12: 821-829.
Lai, S.-J., Y.-C. Kam, F.-H. Hsu & Y.-S. Lin (2002) Elevational effects on the growth and development of tadpoles of Sauter's frog <i>Rana suteri</i> Boulenger in Taiwan. Acta Zoologica Taiwanica 13: 11-20.
Laugen, A. T., A. Laurila, K. Räsänen & J. Merilä (2003) Latitudinal countergradient variation in the common frog (<i>Rana temporaria</i>) development rates - evidence for local adaptation. Journal of Evolutionary Biology 16: 996-1005.
Leips, J. & J. Travis (1994) Metamorphic responses to changing food levels in two species of hylid frogs. Ecology 75: 1345-1356.
Lesbarreres, D., D. S. Schmeller, C. R. Primmer & J. Merila (2007) Genetic variability predicts common frog (<i>Rana temporaria</i>) size at metamorphosis in the wild. Heredity 99: 41-46.
Leskovar, C., N. Oromi, D. Sanuy & U. Sinsch (2006) Demographic life history traits of reproductive natterjack toads <i>Bufo calamita</i> vary between northern and southern latitudes. Amphibia-Reptilia 27: 365-375.
Liess, A., O. Rowe, J. Guo, G. Thomsson & M. I. Lind (2013) Hot tadpoles from cold environments need more nutrients - life history and stoichiometry reflects latitudinal adaptation. Journal of Animal Ecology 82: 1316-1325.
Lind, M. I. (2009) Phenotypic plasticity and local adaptation in an island system of <i>Rana temporaria</i>. Umeå University, Umeå, Sweden.
Lind, M. I. & F. Johansson (2007) The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of <i>Rana temporaria</i>. Journal of Evolutionary Biology 20: 1288-1297.
Lind, M. I. & F. Johansson (2011) Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained <i>Rana temporaria</i> populations. Journal of Evolutionary Biology 24: 2696-2704.
Lind, M. I., F. Persbo & F. Johansson (2008) Pool desiccation and developmental thresholds in the common frog, <i>Rana temporaria</i>. Proceedings of the Royal Society B 275: 1073-1080.
Liu, W.-Y., C.-Y. Wang, T.-S. Wang, G. M. Fellers, B.-C. Lai & Y.-C. Kam (2011) Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (<i>Fejervarya limnocharis</i>) in subtropical Taiwan. Ecotoxicology 20: 377-384.
Lo, W. (2011) The effects of nonlethal predators on the behavior and growth of <i>Fejervarya limnocharis</i> tadpoles. National University of Tainan, Tainan, Taiwan.
Loman, J. (2002) Temperature, genetic and hydroperiod effects on metamorphosis of brown frogs <i>Rana arvalis</i> and <i>R. temporaria</i> in the field. Journal of Zoology 258: 115-129.
Lu, Y.-Q. (1994) Crop science. National Translation and Compilation Center, Taipei, Taiwan.
Měráková, E. & L. Gvoždík (2009) Thermal acclimation of swimming performance in newt larvae: the influence of diel temperature fluctuations during embryogenesis. Functional Ecology 23: 989-995.
Merila, J., A. Laurila, A. T. Laugen & K. Rasanen (2004) Heads or tails? - Variation in tadpole body proportions in response to temperature and food stress. Evolutionary Ecology Research 6: 727-738.
Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla & R. A. Relyea (2005) Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution 20: 685-692.
Mogali, S. M., S. K. Saidapur & B. A. Shanbhag (2011) Receding water levels hasten metamorphosis in the frog, <i>Sphaerotheca breviceps</i> (Schneider, 1799): A laboratory study. Current Science 101: 1219-1222.
Morand, A., P. Joly & O. Grolet (1997) Phenotypic variation in metamorphosis in five anuran species along a gradient of stream influence. Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences 320: 645-652.
Morey, S. & D. Reznick (2000) A comparative analysis of plasticity in larval development in three species of spadefoot toads. Ecology 81: 1736-1749.
Morey, S. & D. Reznick (2001) Effects of larval density on postmetamorphic spadefoot toads (<i>Spea hammondii</i>). Ecology 82: 510-522.
Morey, S. R. & D. N. Reznick (2004) The relationship between habitat permanence and larval development in California spadefoot toads: Field and laboratory comparisons of developmental plasticity. Oikos 104: 172-190.
Newman, R. A. (1987) Effects of density and predation on <i>Scaphiopus couchii</i> tadpoles in desert ponds. Oecologia 71: 301-307.
Newman, R. A. (1988) Adaptive plasticity in development of <i>Scaphiopus couchii</i> tadpoles in desert ponds. Evolution 42: 774-783.
Newman, R. A. & A. E. Dunham (1994) Size at metamorphosis and water loss in a desert anuran (<i>Scaphiopus couchii</i>). Copeia 1994: 372-381.
Niehaus, A. C., R. S. Wilson & C. E. Franklin (2006) Short- and long-term consequences of thermal variation in the larval environment of anurans. Journal of Animal Ecology 75: 686-692.
Pan, Y.-H. (1997) Spatial distribution models of amphibians (Order: Anura) in Taiwan. National Taiwan University, Taipei, Taiwan.
Pfennig, D. W., M. A. Wund, E. C. Snell-Rood, T. Cruickshank, C. l. D. Schlichting & A. P. Moczek (2010) Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology & Evolution 25: 459-467.
Pigliucci, M. (2001) Phenotypic plasticity : Beyond nature and nurture. Johns Hopkins University Press, Baltimore, USA.
Pough, F. H. & S. Kamel (1984) Post-metamorphic change in activity metabolism of anurans in relation to life history. Oecologia 65: 138-144.
Relyea, R. A. (2007) Getting out alive: How predators affect the decision to metamorphose. Oecologia 152: 389-400.
Rose, C. S. (2005) Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends in Ecology and Evolution 20: 129-135.
Schlichting, C. D. & M. Pigliucci (1998) Phenotypic evolution : A reaction norm perspective. Sinauer Associates, Sunderland, Massachusetts, USA.
Sibly, R. M. & D. Atkinson (1994) How rearing temperature affects optimal adult size in ectotherms. Functional Ecology 8: 486-493.
Sinsch, U. (1988) Temporal spacing of breeding activity in the natterjack toad, <i>Bufo calamita</i>. Oecologia 76: 399-407.
Sinsch, U. (1992) Structure and dynamic of a natterjack toad metapopulation (<i>Bufo calamita</i>). Oecologia 90: 489-499.
Sinsch, U. (1997) Postmetamorphic dispersal and recruitment of first breeders in a <i>Bufo calamita</i> metapopulation. Oecologia 112: 42-47.
Smith-Gill, S. J. & K. A. Berven (1979) Predicting amphibian metamorphosis. American Naturalist 113: 563-585.
Smith, D. C. (1983) Factors controlling tadpole populations of the chorus frog (<i>Pseudacris triseriata</i>) on Isle Royale, Michigan. Ecology 64: 501-510.
Smith, D. C. (1987) Adult recruitment in chorus frogs - Effects of size and date at metamorphosis. Ecology 68: 344-350.
Stahlberg, F., M. Olsson & T. Uller (2001) Population divergence of developmental thermal optima in Swedish common frogs, <i>Rana temporaria</i>. Journal of Evolutionary Biology 14: 755-762.
Sumida, M., Y. Kondo, Y. Kanamori & M. Nishioka (2002) Inter- and intraspecific evolutionary relationships of the rice frog <i>Rana limnocharis</i> and the allied species <i>R. cancrivora</i> inferred from crossing experiments and mitochondrial DNA sequences of the 12S and 16S rRNA genes. Molecular Phylogenetics and Evolution 25: 293-305.
Travis, J. (1984) Anuran size at metamorphosis: experimental test of a model based on intraspecific competition. Ecology 65: 1155-1160.
Walsh, P. T., J. R. Downie & P. Monaghan (2008a) Plasticity of the duration of metamorphosis in the African clawed toad. Journal of Zoology 274: 143-149.
Walsh, P. T., J. R. Downie & P. Monaghan (2008b) Temperature-mediated morphology changes during metamorphic climax in the African clawed frog, <i>Xenopus laevis</i>. Journal of Thermal Biology 33: 244-249.
Watkins, T. B. & J. Vraspir (2006) Both incubation temperature and posthatching temperature affect swimming performance and morphology of wood frog tadpoles (<i>Rana sylvatica</i>). Physiological and Biochemical Zoology 79: 140-149.
Wells, K. D. (2007) Complex life cycles and the ecology of amphibian metamorphosis. In: Wells, K. D. (Eds.), The ecology and behavior of amphibians, pp. 559-644. The University of Chicago Press, Chicago, USA.

Werner, E. E. (1986) Amphibian metamorphosis - Growth rate, predation risk, and the optimal size at transformation. American Naturalist 128: 319-341.
Wilbur, H. M. (1980) Complex life cycles. Annual Reviews in Ecology and Systematics 11: 67-93.
Wilbur, H. M. & J. P. Collins (1973) Ecological aspects of amphibian metamorphosis. Science 182: 1305-1314.
Wu, C.-S. & Y.-C. Kam (2009) Effects of salinity on the survival, growth, development, and metamorphosis of <i>Fejervarya limnocharis</i> tadpoles living in brackish water. Zoological Science 26: 476-482.
Wu, C.-S., I. Gomez-Mestre & Y. C. Kam (2012) Irreversibility of a bad start: Early exposure to osmotic stress limits growth and adaptive developmental plasticity. Oecologia 169: 15-22.
Yang, Y. R. (1998) A field guide to the frogs and toads of Taiwan. Chinese Photography Association Press, Taipei, Taiwan.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3730-
dc.description.abstract兩棲類幼體具有高度的表型可塑性,能因應水域環境的變化來調整變態策略(變態體型大小和變態時間),以提高上陸後的適存度。然而,水域環境會隨季節變化,但卻鮮有研究針對季節性環境變化,探討兩棲類族群所衍生之季節性變態策略;另一方面,不同地區的兩棲類族群,亦需面對各自水域環境的差異性。故研究兩棲類幼體因應時空(季節性與地域性)環境變化,所產生的變態策略差異或趨勢,能讓我們更深入瞭解兩棲類的表型可塑性能力。本論文以澤蛙蝌蚪為材料,以實驗操弄的方式,探討下列四個問題:(1)生活在具二期稻作(分別為春和夏季)稻田的澤蛙蝌蚪是否因應兩期稻作期的環境溫度差異,而有不同的變態策略?(2)在兩個環境因子(溫度和食物量)的交互作用下,春夏兩季澤蛙蝌蚪的變態策略有何差異?(3)在不同地點的二期稻作區之澤蛙蝌蚪族群,其春夏兩季變態策略是否具一致性?(4)不同作物區的灌溉模式(水稻田:不連續灌溉和筊白筍田:連續灌溉),是否會影響澤蛙蝌蚪此兩季變態策略的分化?針對上述問題,我設計了下列四個實驗來檢測。
實驗一在新北市新店安康農場,分別採集自兩期稻作5月(春季)和9月(夏季)的澤蛙蝌蚪,在食物無限量供應下進行溫度(攝氏22和29度)和繁殖群(春和夏季)的2 × 2複因子實驗。結果發現不論是春或夏季蝌蚪,當飼養在各自的季節溫度時(春季在22度;夏季在29度),生長速率較快,因此澤蛙蝌蚪變態策略具有季節性的差異。推測蝌蚪已適應各自所生長的季節溫度,因此呈現較佳的生長速率。在低溫(22度)下,春季蝌蚪變態體重明顯大於夏季蝌蚪;而在高溫(29度)下,兩季蝌蚪皆提高其生長速率,但是夏季蝌蚪速率顯著高於春季。此結果顯示,二期稻作區的澤蛙蝌蚪因應春夏兩季不同氣溫,採用不同的變態策略,春季蝌蚪於低溫環境採用「體型優勢」策略,而夏季蝌蚪則在高溫下採用「速率優勢」策略。
實驗二仍自安康農場採集春季和夏季的澤蛙蝌蚪,以溫度(22和29度)、食物量(限量和無限量)和繁殖群(春和夏季)進行2 × 2 × 2複因子實驗。結果顯示食物量改變了溫度對變態策略的影響。在食物供給無虞情況下,春夏蝌蚪變態策略與實驗一結果雷同;然而,在食物有限的情況下,兩季蝌蚪的變態體重皆明顯降低;低溫下的春季蝌蚪相對於夏季蝌蚪仍保有體重優勢,具有較大變態體重;但是高溫下的夏季蝌蚪卻失去其速率優勢,生長速率顯著低於春季蝌蚪。由此得知澤蛙蝌蚪因應溫度和食物量兩種環境因子的交互作用,會調整春夏兩群之變態策略。
實驗三採集了不同地點的二期稻作區澤蛙蝌蚪(安康、大溪和彰化),在食物無限量供應下進行溫度(22和29度)和繁殖群(春和夏季)2 × 2複因子實驗。結果發現三地澤蛙蝌蚪皆有春夏兩季變態策略之差異,但三地族群呈現程度不一的季節差異。緯度最北的安康族群,具有明顯的季節性變態策略,春季蝌蚪在低溫下具有體重優勢,而夏季蝌蚪在高溫下具有速率優勢。這可能是因安康的夏季溫度變異最大,加上此樣區稻作面積最小、族群狀態也較封閉。大溪和彰化兩地族群的季節性的變態策略都不若安康明顯,可能因為兩地的稻作面積都極大,週邊有連續族群可交流之故。最南的彰化族群,其春夏蝌蚪變態策略差異在三地中最不明顯,可能是因其兩季均溫最高且穩定。
實驗四比較生活於水稻田(大溪:不連續灌溉)與筊白筍田(三芝:連續灌溉)的澤蛙蝌蚪,在食物無限量供應下進行溫度(22和29度)和繁殖群(春和夏季)2 × 2複因子實驗。結果發現來自筊白筍田的澤蛙蝌蚪,並不具有春夏變態策略季節性差異,兩季蝌蚪的變態時間僅受溫度影響,相同溫度處理下,春夏蝌蚪具有相同的蝌蚪期天數。此外,春夏兩季蝌蚪在低溫下的變態體重及生長速率差異不大;而高溫下,春季蝌蚪生長速率反而比夏季較高。由此推測,來自不同作物區的澤蛙蝌蚪,灌溉模式的不同會影響其是否具有季節性變態策略。筊白筍田的澤蛙族群,因繁殖期間有持續的灌溉水,可視為永久性池塘,此與二期稻作調節性排乾灌溉水的暫時性池塘不同,故筊白筍田澤蛙蝌蚪不具季節性變態策略之差異。
綜合以上實驗,兩期稻作區澤蛙蝌蚪因應春夏氣溫條件差異,產生季節性最佳變態策略,在食物充沛時,春季蝌蚪於低溫環境採用「體型策略」,夏季蝌蚪在高溫下採用「速率策略」。在溫度和食物量的交互作用下,兩季蝌蚪會調整其變態策略;在食物受限情況下,春夏季(尤其是後者)蝌蚪均展現截然不同的變態策略。此外,在台灣北部與中部之二期稻作區蝌蚪皆具季節分化現象,但因各地氣候與環境仍有些微差異,北台灣的新店安康季節分群最明顯,其次為大溪,最後則為中部的彰化。而在台灣北部的筊白筍田,因持續有水以致春夏蝌蚪變態策略未有季節上的差異。本篇論文顯示,澤蛙蝌蚪在環境的時空變異下具有高度可塑性,除了提供澤蛙生活史中變態策略的相關研究,亦指出「時間分群研究」對繁殖季甚長的物種之重要性。
zh_TW
dc.description.abstractAmphibian larvae have high plasticity in life history traits such as metamorphic age and size to cope with the varied aquatic environments. However, among the plentiful studies, few have investigated the effects of seasonal environmental changes. On the other hand, amphibian populations in diverse habitats or at different locations may face considerably distinct environmental variations. To better understand the life history responses of amphibian larvae to the spatial and temporal environmental variations, I used common garden experiments to investigate the metamorphic strategies of the rice paddy frog, <i>Fejervarya limnocharis</i>, tadpoles. I asked the following four questions: (1) Do <i>F. limnocharis</i> tadpoles living in two crops rice fields show cohort-dependent (spring vs. summer cohorts) metamorphic strategies in response to different temperature regimes in spring and summer? (2) How does food availability alter the responses of <i>F. limnocharis</i> spring and summer cohorts to seasonal temperature regimes? (3) Is cohort-dependent plasticity a common life-history strategy among different populations of <i>F. limnocharis</i> residing in two-crops rice fields? (4) Do <i>F. limnocharis</i> populations living in cultivated fields with different irrigation regimes exhibit differential cohort-dependent metamorphic strategies? I performed four experiments to tackle the four questions, respectively. In experiment 1, I collected spring (May) and summer (September) <i>F. limnocharis</i> tadpoles from Ankang rice fields. The tadpoles underwent a 2 x 2 temperature (22 vs. 29 ºC) by cohort (spring vs. summer cohort) factorial experiment. I found that both spring and summer tadpoles have higher growth rate when raised under their respective field temperatures. Moreover, spring and summer tadpoles used 'size advantage' and 'rate advantage' as cohort-dependent metamorphic strategies in response to seasonal temperatures, respectively. That is, spring tadpoles responded to low temperature with larger metamorphic weight, while the summer tadpoles did not. On the other hand, while both spring and summer tadpoles responded to high temperature with accelerating growth rates, summer tadpoles grew significantly faster than the spring ones. In the second experiment, I manipulated an additional factor: food availability (<i>ad libitum</i> vs. restricted) in a 2 x 2 x 2 temperature by food by cohort factorial experiment. The results were similar to those of experiment 1 when larvae were raised under <i>ad libitum</i> food. However, under restricted food, both spring and summer cohort reduced their metamorphic size. Spring tadpoles still had size advantage than summer ones at low temperature, whereas summer ones lost their 'rate advantage' at high temperature and had slower growth rates than spring ones. In the third experiment, I collected tadpoles from rice fields at three locations: northern (Ankang and Daxi) and central (Changhua) Taiwan to examine their similarity in cohort-dependent plasticity. The tadpoles underwent a 2 x 2 x 2 temperature by cohort by location factorial experiment. The results showed that all three populations had cohort-dependent plasticity. Inter-population variations exist: the most northern population, Ankang, showed the clearest cohort-dependent plasticity likely due to being at a strongly seasonal temperatures and largely isolated location. The other northern population, Daxi, displayed a moderate, while the central population, Changhua, showed the least cohort-dependent plasticity probably due to the reduced seasonality in temperature toward the south. In the fourth experiment, I collected tadpoles from rice paddies and water bamboo fields that differ in irrigation regimes (disrupted vs. constant irrigation). The tadpoles underwent a temperature by cohort by irrigation system factorial experiment. The results showed that tadpoles from disrupted irrigation populations had cohort-dependent metamorphic strategies, while tadpoles from constant irrigation populations did not. Overall, the four experiments reveal that <i>F. limnocharis</i> tadpoles have high plasticity, specifically strong cohort-dependence, in metamorphic traits. Spring and summer tadpoles used 'size advantage' and 'rate advantage' strategies, respectively in response to seasonal temperatures. Such strategies vary depending on food availability, geographic location, and irrigation system.en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:36:16Z (GMT). No. of bitstreams: 1
ntu-105-D94b44004-1.pdf: 3265844 bytes, checksum: ba4475cad0fb1e528482c82277f99ac0 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書-i
誌謝-ii
中文摘要-iii
Abstract-vii
Chapter 1. Introduction-1
1.1 Models of life-history strategy of larval amphibians-2
1.2 Factors affect life-history strategy of larval amphibians-5
1.3 Study species-11
1.4 Study objectives-13
Chapter 2. Bigger or Faster? Spring and Summer Tadpole Cohorts Use Different Life-history Strategies-17
2.1 Abstract-18
2.2 Introduction-19
2.3 Materials and Methods-23
2.4 Results-27
2.5 Discussion-30
2.6 Figures and Tables-35
Chapter 3. Cohort-dependent Life-history Strategies: Responses to Temperature and Food Availability-37
3.1 Abstract-38
3.2 Introduction-39
3.3 Materials and Methods-45
3.4 Results-49
3.5 Discussion-54
3.6 Figures and Tables-62
3.7 Supplement tables-68
Chapter 4. Inter-population Variation in Life-history Strategies of the Indian Rice Frog, <i>Fejervarya limnocharis</i>, in Response to Temperature-71
4.1 Abstract-72
4.2 Introduction-73
4.3 Materials and Methods-78
4.4 Results-82
4.5 Discussion-88
4.6 Figures and Tables-94
4.7 Supplement tables-100
Chapter 5. Metamorphic Strategies of the Indian rice frog, <i>Fejervarya limnocharis</i>, in Response to Irrigation Regimes-105
5.1 Abstract-106
5.2 Introduction-107
5.3 Materials and Methods-111
5.4 Results-115
5.5 Discussion-119
5.6 Figures and Tables-126
5.7 Supplement tables-131
Chapter 6. Conclusions-135
References-139
dc.language.isoen
dc.subject時間分群zh_TW
dc.subject澤蛙蝌蚪zh_TW
dc.subject季節變態策略zh_TW
dc.subject溫度zh_TW
dc.subject食物量zh_TW
dc.subject灌溉水位zh_TW
dc.subject可塑性zh_TW
dc.subjectPlasticityen
dc.subjectTemporal divergencesen
dc.subjectTemperatureen
dc.subjectCohort-dependent metamorphic strategiesen
dc.subjectFejervarya limnocharis tadpolesen
dc.subjectFood amounten
dc.subjectIrrigation regimesen
dc.title台灣二期稻作區澤蛙生活史策略之季節分化zh_TW
dc.titleDivergent Life-History Strategies of Temporal Cohorts of Indian Rice Frogs (Fejervarya limnocharis) in the Two-Crops Rice Fields in Taiwanen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee關永才,林思民,何傳愷,巫奇勳
dc.subject.keyword澤蛙蝌蚪,季節變態策略,溫度,食物量,灌溉水位,可塑性,時間分群,zh_TW
dc.subject.keywordCohort-dependent metamorphic strategies,Fejervarya limnocharis tadpoles,Food amount,Irrigation regimes,Plasticity,Temperature,Temporal divergences,en
dc.relation.page146
dc.identifier.doi10.6342/NTU201600570
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
Appears in Collections:生態學與演化生物學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf3.19 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved