請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37306完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬(Chun-Pin Lin) | |
| dc.contributor.author | Ming-Hsiu Wu | en |
| dc.contributor.author | 吳明修 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:23:57Z | - |
| dc.date.available | 2010-08-13 | |
| dc.date.copyright | 2008-08-13 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-22 | |
| dc.identifier.citation | 1.呂志明、陳文斌、林俊彬,根管治療用鎳鈦旋轉器械之幾何型態與撓曲度之力學分析,國立臺灣大學醫學院臨床牙醫學研究所牙髓病學組碩士論文,2006.
2.Bahia MGA, Martins RC, Gonzalez BM, Buono VTL. Physical and mechanical characterization and the influence of cycle loading on the behavior of nickel-titanium wires employed in the manufacture of rotary endodontic instruments. Int Endod J 2005;38:795-801. 3.Berutti E, Chiandussi G, Gaviglio I, Ibba A. Comparative analysis of torsinal and bending stresses in two mathematical models of Nickel-Titanium rotary instruments: ProTaper versus Profile. J Endod 2003;29:15-19. 4.Bramante CM, Betti LV. Comparative analysis of curved root canal preparation using nickel-titanium instruments with or without EDTA. J Endod 2000;26:278-280. 5.Buehler WH, Gilfrich JV, Wiley RC. Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics 1963;34:1475-1477. 6.Camps JJ, Pertot WJ. Torsional and stiffness properties of canal master U stainless steel and nickel-titanium instruments. J Endod 1994;20:395-398. 7.Civjan S, Huget EF, DeSimon LB. Potential applications of certain nickel-titanium (nitinol) alloys. J Dent Res 1975;54:294-300. 8.Cohen S, Burns RC. Pathways of the pulp. 7th ed. St. Louis: Mosby-Year Book, Inc.,1998:255. 9.Cunningham CJ, Senia ES. A three-dimensional study of canal curvatures in the mesial roots of mandibular molars. J Endod 1992;18:294-299. 10.Davis RD, Marshall JG, Baumgartner JC. Effect of early coronal flaring on working length change in curved canals using rotary nickel-titanium versus stainless steel instruments. J Endod 2002;28:438-442. 11.Esposito PI, Cunningham CJ. A comparison of curved canal preparations with nickeltitanium and stainless steel instruments. J Endod 1995;21:171-173. 12.Gambarini G. Torsional and cyclic fatigue of ProFile NiTi rotary instruments. J Evol Dent 1999;2:4-14. 13.Glosson CR, Haller RH, Dove SB, del Rio CE. A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine driven, and K-Flex endodontic instruments. J Endodon, 1995;21:146-151. 14.Gullickson DC, Montgomery S. The study of root canal morphology using a digital image processing technique. J Endod 1987;13:158-163. 15.Günday M, Sazak H, Garip Y. A comparative study of three different root canal curvature measurement techniques and measuring the canal access angle in curved canals. J Endod 2005;31:796-798. 16.Hankins PJ, ElDeeb ME. An evaluation of the canal master, balanced-force, and step-back techniques. J Endod 1996;22:123-130. 17.Harian AL, Nicholls JI, Steiner JC. A comparison of curved canal instrumentation using nickel-titanium or stainless steel files with the balanced-force technique. J Endod 1996;22:410-413. 18.Kartal N, Climilli. The degrees and congifurations of mesial canal curvatures of mandibular first molars. J Endod 1997;23:358-362 19.Kuhn G, Jordan L. Fatigue and mechanical properties of nickel-titanium endodontic instruments. J Endod 2002;28:716-720 20.Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic instruments failure. J Endod 2001;27:516-520 21.Lee JK, Ha BH, Choi JH, Heo SM, Peripanayagam H. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography. J Endod 2006;32:941-945 22.Lim KC, Webber J. The effect of canal preparation on the shape of the curved root canal. Int Endod J 1985;18:233-236. 23.Lim SS, Stock CJR. The risk of perforation in the curved canal: anticurvature filing compared with the stepback technique. Int Endod J 1987;20:33-39. 24.Low D, Ho WL, Cheung SP, Darvell BW. Mathematical modeling of flexural behavior of rotary nickel-titanium endodontic instruments. J Endod 2006;32:545-548. 25.Miyai K, Ebihara A, Hayashi H, Doi H, Suda H, Yoneyama T. Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic instruments. Int Endod J 2006;39:119-126. 26.Nagy CD, Szabo J. A mathematically based classification of root canal curvatures on natural human teeth. J Endod 1995;21:557-560. 27.Peters OA, Peters CI, Schonenberger K, Barbakow F. ProTaper rotary root canal preparation: assessment of torque and force in relation to canal anatomy. Int Endod J 2003;36:93-99. 28.Pettiete MT, Delano EO, Trope M. Evaluation of success rate of endodontic treatment performed by students with stainless-steel K-files and nickel-titanium hand files. J Endod 2001;27:124-127. 29.Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23:77-85. 30.Ruddle CJ. The ProTaper endodontic system: geometries, features, and guidelines for use. Dent Today 2001;20:60-67. 31.Scha¨ fer E, Dzepina A, Gholamreza D. Bending properties of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:757-763. 32.Scha¨ fer E, Hoppe W. Roentgenographic investigation of frequency and degree of canal curvatures in human permanent teeth. J Endod 2002;28:211-216. 33.Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg 1971;32:271-275. 34.Thompson SA. An overview of nickel–titanium alloys used in dentistry. Int Endod J 2000;33:297-310 35.Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod 2000;26:414-417. 36.Walia H, Brantley WA, Gerstein H. An initial investigation of the bending and torsion properties of nitinol root canal file. J Endod 1988;14:346-351. 37.Weine FS. Endodontic therapy, 3rd ed. St. Louis: CV Mosby, 1982:288-306. 38.Xu XJ, Zheng YF. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. J Endod 2006;32:372-375. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37306 | - |
| dc.description.abstract | 對於臨床的牙醫師尤其針對沒有接受過長期且專業根管專科訓練的醫師而言,如何能快速且準確的判斷一顆牙齒其根管治療的難易度是非常重要的,大部分的狀況都是藉由一張術前X光片來評估,難易度大致上是和根管的彎曲度成正比,然而先前一些學者提出的一些角度的量測方法都十分複雜,且各種方法都有其優缺點,所以我們在這裡希望能簡單的在X光片上畫幾條直線,找尋新的參數來評估根管的彎曲度,以代替複雜的角度量測。
本實驗先選擇在臨床上需要做根管治療的30顆人類下顎第一顆大臼齒,利用Günday在2005年發表的方法加以改良,並且加入長度這個參數,測量各個參數及其之間的相關係數;再利用我們提出的new technique量測同樣的30顆牙齒,一樣測量我們新定義的參數(X、Y、Z)並且分析參數間的關係,統計方面使用Pearson correlation;之後我們又設計了一個靜態彎曲測試的模具,希望藉由鎳鈦旋轉器械的彎曲來模擬根管的彎曲度,藉由此彎曲度驗證我們提出的方法,並且找尋各參數間的相對應數值,再利用負載三段式曲線圖定義出臨界點,找出修型時的絕對安全區、相對安全區、絕對危險區;最後再利用有限元素分析法進行靜態彎曲測試的模擬,看與實體實驗之間是否可相呼應。 我們發現利用Günday technique改良版來測量的結果,Coronal Access Angle是多餘的,它可以被X/Y這個比值所取代,因為他們是三角函數tan的關係,且發現根管長度對於彎曲度的形容來說也是一個可用的參數;而利用我們新定義的new technique來測量時,會發現可將根管彎曲的地方分成上下半部來思考,上半部可視為彎曲的起始,可以用Schneider角度來表示,下半部可視為彎曲的結束,可以用Weine角度來表示,並且又可以把上下半部根管長度列入新的參數來取代上述兩種角度參數。 利用我們設計的靜態彎曲測試會發現SA和X/(Y+Z)、X/Y有很高的正相關,WA和X(Y+Z)、X/Z有很高的正相關,也就是先前學者提出的角度參數SA、WA可以被我們提出的線性參數間比值X/(Y+Z)、X/Y、X/Z所代替。至於有限元素分析的部分,在器械彎曲的程度和實體實驗之間比較起來相似度頗高,以後可以利用在模擬方面,以減低我們需大量器械做實驗時的成本。 結論是當我們今天遇到一個彎曲的根管要來形容時,我們可以畫幾條直線且用三個線性參數(X、Y、Z)來表達,第一個就是X/(Y+Z),可大略的知道最彎的程度為何?再來就是Y/(Y+Z),可知道根管最彎處位在整個根管的那個地方(前、中、後段?),再來若想更深入的探討彎曲的地方,可利用X/Y來形容彎曲的起始處,再利用X/Z來形容彎曲的結束。 | zh_TW |
| dc.description.abstract | It is important for a dentist to diagnose the difficulty of root canal therapy quickly and definitely. In most situation, we usually use a pre-operative radiography as a guide and the difficulty of root canal therapy is propose to the root canal curvature. Although many methods about the root canal curvature were published, but they still had many disadvantages and been very complicated. The purpose of this study is to find new linear parameters to describe the root canal curvature instead of the complicated angular parameters.
Thirty human mandibular first molar which need root canal therapy were collected. First we use digital X-ray system (Digoraâ) to take pre-operation radiography and then determine the parameters of Günday technique. We also determine the same thirty teeth with the linear parameters of new technique. The resultant values were evaluated statistically using Pearson correlation. A new designed statistic bending test model were used to stimulate the root canal curvature. After analyzing the relationships between the linear and angular parameters, we can find a rule to define the root canal curvature with a new definition. Then the preparation sequence and the difficulty of root canal therapy can be defined. Finally we use finite element method to simulate the statistic bending test. The parameter Coronal Access Angle seems to be excrescent in Günday technique and can be replaced by the specific value X/Y. The previous angular parameter Schneider’s angle can be replaced by the specific values X/(Y+Z) and X/Y in new technique. The Weine’s angle can be replaced by X/(Y+Z) and X/Z. A significant correlation was seen between the finite element method and the statistic bending test. We can use the finite element method to replace the complicated actual study and made it efficiently and economically. If we want to describe a root canal curvature with our new definition. We can use the special value X/(Y+Z) to show the generalized curvature. And then we use the value Y/(Y+Z) to define the most curved point is at what level in the whole canal (coronal, middle, or apical part?). Finally, if we want to describe the curvature definitely. We can use the value X/Y to describe the initial part of the curve and use the value X/Z to describe the posterior part of the curve. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:23:57Z (GMT). No. of bitstreams: 1 ntu-97-P94422004-1.pdf: 3039204 bytes, checksum: 102a4895cd04b32cd0a06b3286b66d0e (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 總目錄 VI 圖目錄 IX 表目錄 XII 參考文獻 XII 總目錄 第一章 前言 1 第二章 文獻回顧 4 2.1 根管彎曲度的分析 4 2.2 鎳鈦旋轉器械的發展 6 2.3 根管器械的彎曲測試 8 2.4 有限元素分析法 9 第三章 研究動機與目的 12 第四章 材料方法與研究步驟 13 4.1 研究主要設備介紹 13 4.2 臨床X光片根管彎曲度量測 13 4.2.1 Günday technique改良版 13 4.2.2 新根管彎曲度的定義--new technique 14 4.3 靜態彎曲測試 (Static Bending Test) 14 4.3.1 樣本的準備 14 4.3.2 實驗模具的設計 14 4.3.3 夾具的製作 15 4.3.4 鎳鈦旋轉器械的選擇 15 4.3.5 實驗的分組 15 4.3.6 操作方法 15 4.3.7 鎳鈦旋轉器械彎曲度的量測 16 4.3.8 臨界點的定義與量測 16 4.4 有限元素分析法模擬 17 第五章 結果 18 5.1 臨床X光片根管彎曲度量測 18 5.1.1 Günday technique 改良版 18 5.1.2 New technique 18 5.2 靜態彎曲測試 (Static Bending Test) 19 5.2.1 金屬塊位移與彎曲角度間的關係 19 5.2.2 各參數間的關係 20 5.2.3 三段式負載曲線圖 20 5.2.4 負載與參數間的關係 21 5.2.5 根管彎曲度與治療難易度的分析 21 5.3有限元素分析法模擬 22 5.3.1 靜態彎曲測試模擬 22 5.3.2 器械最彎處與最大應力處的關係 23 第六章 討論 24 6.1 臨床X光片根管彎曲度量測 24 6.1.1 Günday technique改良版 24 6.1.2 New technique 25 6.2 靜態彎曲測試 (Static Bending Test) 27 6.2.1 金屬塊位移與彎曲角度間的關係 27 6.2.2 各參數間的關係 28 6.2.3 三段式負載曲線圖 29 6.2.4 負載與參數間的關係 30 6.2.5 根管彎曲度與治療難易度的分析 30 6.3 有限元素分析法模擬 33 6.3.1 靜態彎曲測試模擬 33 6.3.2 器械最彎處與最大應力處的關係 33 第七章 結論 35 第八章 未來展望 36 圖目錄 圖1. 彎曲根管修型時常見的意外 37 圖2. 鎳鈦器械的超彈性適合彎曲根管修型 37 圖3. Schneider technique (Schneider, 1971) 38 圖4. Pruett technique (Pruett, 1997) 38 圖5 左. Long-axis technique (Hankins, 1996)與Schneider's angle、Weine's angle (Weine, 1982)間的比較 39 圖五右. Coronal access angle (Günday, 2005) 39 圖6. 鎳鈦合金的stress-strain curve 40 圖7. 鎳鈦合金受負載時晶相轉變的情形 40 圖8. Protaperâ鎳鈦旋轉器械 F1~F3 41 圖9. 呂志明醫師設計的靜態彎曲測試模具 41 圖10. Turpin利用FEM分析ProFile及Hero的應力變化 42 圖11. Berutti利用FEM分析ProTaper和ProFile的應力變化 42 圖12. Xu利用FEM模擬六種根管器械ProTaper、Hero642、 MTwo、ProFile、Quantec、NiTiflex的應力分佈圖 43 圖13. 利用FEM模擬ProTaper進入彎曲根管 44 圖14. 利用FEM模擬靜態彎曲測試 45 圖15. FEM與實體實驗之間有很高的相關連性 45 圖16. Günday technique改良版 46 圖17. Digoraâ數位影像系統照射臨床X光片 46 圖18 左.利用兩切線及其分角線取得根管最彎處c點 47 圖18 右. New technique的各參數示意圖 47 圖19. 萬有拉力測試機(Instron 5566;Canton,MA,USA) 48 圖20. 靜態彎曲測試實驗模具 48 圖21. New technique應用在靜態彎曲測試之示意圖 49 圖22. 將a點定義延伸至長度18mm處,重新畫圖 49 圖23. 利用FEM模擬靜態彎曲測試 50 圖24. 利用FEM量測鎳鈦旋轉器械在彎曲時的應力變化 50 圖25. 金屬塊下壓時,SA與WA之相對關係 51 圖26. 金屬斜坡塊下壓,SA大致呈現線性的增加 51 圖27. 金屬斜坡塊下壓到一定的距離後,WA趨近75度 52 圖28. 金屬斜坡塊下壓至16mm後,器械尖端貼緊斜坡,Weine's angle固定在75度 (F1實驗組) 52 圖29. X/(Y+Z)與金屬斜坡塊下壓距離的關係圖 53 圖30. X/Y與金屬斜坡塊下壓距離的關係圖 53 圖31. X/Z與金屬斜坡塊下壓距離的關係圖 54 圖32. 負載力與金屬斜坡塊下壓距離的曲線圖 54 圖33. 負載力與Schneider's angle的曲線圖 55 圖34. 負載力與Weine's angle的曲線圖 55 圖35. 負載力與X/(Y+Z)的曲線圖 56 圖36. FEM裡,SA與金屬斜坡塊下壓距離的關係圖 56 圖37. FEM裡,WA與金屬斜坡塊下壓距離的關係圖 57 圖38. FEM裡,X/(Y+Z)與金屬斜坡塊下壓距離的關係圖 57 圖39. FEM裡,器械最彎處與最大應力處的關係 58 圖40. 相同的SA,不同的入彎處有不同的根管彎曲型態 59 圖41. CAA與X/Y是三角函數裡tan的關係 59 圖42. 利用New technique發現根管彎曲處可略分成上下半部彎曲 60 圖43. WA與X/(Y+Z)的關係圖 61 圖44. WA與X/Z的關係圖 61 圖45. SA與X/(Y+Z)的關係圖 62 圖46. SA與X/Y的關係圖 62 表目錄 表1. Günday於2005年所統計的西方人根管彎曲度參數 63 表2. Günday technique改良版測量的各個參數大小 63 表3. Günday technique改良版裡各參數間的相關係數 64 表4. New technique改良版測量的各個參數大小 64 表5. New technique裡各參數間的相關係數 65 表6. 靜態彎曲測試:F3實驗組各參數間的相關係數 65 表7. 靜態彎曲測試:F2實驗組各參數間的相關係數 66 表8. 靜態彎曲測試:F1實驗組各參數間的相關係數 66 表9. 靜態彎曲測試:F3實驗組延伸a點後各參數間的相關係數 67 表10. SA、WA、X/(Y+Z)在臨界點(CP1、CP2)的數值 68 表11. 簡易、中等、困難根管相對應的SA、WA、X/(Y+Z)值 安全、相對安全、危險區定義 69 表12. FEM模擬靜態彎曲測試的各參數相關係數 69 表13. 實驗組別裡X/(Y+Z)和X/Z對WA的相關係數比較 70 表14. 實驗組別裡X/(Y+Z)和X/Y對SA的相關係數比較 70 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.title | 根管彎曲度的新參數及其在臨床上的意義 | zh_TW |
| dc.title | New parameters of the root canal curvature and their clinical significance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳文斌(Weng-Pin Chen) | |
| dc.contributor.oralexamcommittee | 單秋成(Chow-Shing Shin) | |
| dc.subject.keyword | 根管彎曲度,線性參數,Schneider角度,Weine角度,有限元素法, | zh_TW |
| dc.subject.keyword | root canal curvature,linear parameter,finite element method,Schneider's angle,Weine's angle, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
