Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37299
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽明(Ming Ouhyoung)
dc.contributor.authorWan-Chun Maen
dc.contributor.author馬萬鈞zh_TW
dc.date.accessioned2021-06-13T15:23:45Z-
dc.date.available2008-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citation[BBA+07] Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy, Hanspeter Pfister, and Markus Gross. Multi-scale capture of facial geometry and motion. ACM Transacations on Graphics, 26(3):33, 2007.
[BBPW04] Thomas Brox, Andres Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical flow estimation based on a theory for warping. In European Conference on Computer Vision, 2004.
[BMA04] Masashi Baba, Masayuki Mukunoki, and Naoki Asada. Estimating roughness parameters of an object s surface from real images. In SIGGRAPH Posters, 2004.
[Bon99] Georges-Pierre Bonneau. Optimal triangular Haar bases for spherical data. In IEEE Visualization, 1999.
[BP03] Svetlana Barsky and Maria Petrou. The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Transacations on Pattern Analysis and Machine Intelligence, 25(10):1239–1252, 2003.
[CGS06] Tongbo Chen, Michael Goesele, and Hans-Peter Seidel. Mesostructure from specularity. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2006.
[CGZ+05] Yung-Yu Chuang, Dan Goldman, Ke Colin Zheng, Brian Curless, David Salesin, and Richard Szeliski. Animating pictures with stochastic motiontextures. In ACM Transacations on Graphics, volume 24, pages 853–860, New York, NY, USA, 2005. ACM.
[CLFS07] Tongbo Chen, Hendrik Lensch, Christian Fuchs, and Hans-Peter Seidel. Polarization and phase-shifting for 3D scanning of translucent objects. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[CM03] Enrique Cerda and Lakshminarayanan Mahadevan. Geometry and physics of wrinkling. Physical Review Letters, 90(7):074302, 2003.
[CZH+00] Yung-Yu Chuang, Douglas Zongker, Joel Hindorff, Brian Curless, David Salesin, and Richard Szeliski. Environment matting extensions: Towards higher accuracy and real-time capture. In Proc. SIGGRAPH, pages 121–130, 2000.
[DHT+00] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and Mark Sagar. Acquiring the reflectance field of a human face. In Proc. SIGGRAPH, pages 145–156, 2000.
[DNRR05] James Davis, Diego Nehab, Ravi Ramamoorthi, and Szymon Rusinkiewicz. Spacetime stereo: A unifying framework for depth from triangulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2):296–302, 2005.
[DSP06] Kevin Der, Robert Sumner, and Jovan Popovi’c. Inverse kinematics for reduced deformable models. ACM Transacations on Graphics, 25(3):1174–1179, 2006.
[FDCO03] Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. Bilateral mesh denoising. In Proc. SIGGRAPH, pages 950–953, 2003.
[GGW+98] Brian Guenter, Cindy Grimm, DanielWood, Henrique Malvar, and Fr’ed’eric Pighin. Making faces. In Proc. SIGGRAPH, pages 55–66, 1998.
[GKMD06] Paul Green, Jan Kautz, Wojciech Matusik, and Fr’edo Durand. View-dependent precomputed light transport using nonlinear gaussian functionapproximations. In Symposium on Interactive 3D Graphics and Games, pages 7–14, 2006.
[GMP+06] Aleksey Golovinskiy, Wojciech Matusik, Hanspeter Pfister, Szymon Rusinkiewicz, and Thomas Funkhouser. A statistical model for synthesis of detailed facial geometry. ACM Transacations on Graphics, 25(3):1025–1034, 2006.
[GTHD03] Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul Debevec. Linear light source reflectometry. Proc. SIGGRAPH, 22(3):749–758, 2003.
[HBKM96] Mark Halstead, Brian Barsky, Stanley Klein, and Robert Mandell. Reconstructing curved surfaces from specular reflection patterns using spline surface fitting of normals. In Proc. SIGGRAPH, pages 335–342, 1996.
[HGE01] Antonio Haro, Brian Guenter, and Irfan Essa. Real-time, photo-realistic, physically based rendering of fine scale human skin structure. In Rendering Techniques (Eurographics Workshop on Rendering), 2001.
[HWT+04] Tim Hawkins, Andreas Wenger, Chris Tchou, Andrew Gardner, Fredrik G‥oransson, and Paul Debevec. Animatable facial reflectance fields. In Rendering Techniques (Eurographics Symposium on Rendering), pages 309–320, 2004.
[Ike81] Katsushi Ikeuchi. Determining surface orientation of specular surfaces by using the photometric stereo method. IEEE Transacations on Pattern Analysis and Machine Intelligence, 3(6):661–669, 1981.
[JGB+06] Andrew Jones, Andrew Gardner, Mark Bolas, Ian McDowall, and Paul Debevec. Performance geometry capture for spatially varying relighting. In European Conference on Visual Media Production, 2006.
[JTDP03] Pushkar Joshi, Wen Tien, Mathieu Desbrun, and Fr’ed’eric Pighin. Learning controls for blend shape based realistic facial animation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 187–192, 2003.
[KSS02] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, arbitrary brdf shading for low-frequency lighting using spherical harmonics. In Rendering Techniques (Eurographics Workshop on Rendering), pages 291–296, 2002.
[Lan] Hayden Landis. Production-ready global illumination. pages 87–101.
[LCF00] John Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. SIGGRAPH, pages 165–172, 2000.
[LK03] Jaakko Lehtinen and Jan Kautz. Matrix radiance transfer. In Symposium on Interactive 3D Graphics and Games, pages 59–64, 2003.
[LKG+03] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele,Wolfgang Heidrich, and Hans-Peter Seidel. Image-based reconstruction of spatial appearance and geometric detail. ACM Transacations on Graphics, 22(2):234–257, 2003.
[LSSS04] Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, and John Snyder. All-frequency precomputed radiance transfer for glossy objects. In Rendering Techniques (Eurographics Symposium on Rendering), pages 337–344, 2004.
[LTW95] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic modeling for facial animation. Proc. SIGGRAPH, pages 55–62, 1995.
[LZ99] Charles Loop and Zhengyou Zhang. Computing rectifying homographies for stereo vision. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 125–131, 1999.
[Mer84] Steven Mersch. Polarized lighting for machine vision applications. In Proc. RI/SME Annual Applied Machine Vision Conference, pages 40–54, 1984.
[MGW01] Tom Malzbender, Dan Gelb, and Hans Wolters. Polynomial texture maps. In Proc. SIGGRAPH, pages 519–528, 2001.
[MPBM03] Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard McMillan. A data-driven reflectance model. ACM Transacations on Graphics,22(3):759–769, 2003.
[MWGA06] Tom Malzbender, Bennett Wilburn, Dan Gelb, and Bill Ambrisco. Surface enhancement using real-time photometric stereo and reflectance transformation. In Rendering Techniques (Eurographics Symposium on Rendering), pages 245–250, 2006.
[MWL+99] Stephen Marschner, Stephen Westin, Eric Lafortune, Kenneth E. Torrance, and Donald P. Greenberg. Image-based BRDF measurement including human skin. Rendering Techniques (Eurographics Workshop on Rendering), pages 139–152, 1999.
[MZKB] Satya Mallick, Todd Zickler, David Kriegman, and Peter Belhumeur. Beyond Lambert: Reconstructing specular surfaces using color. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 2.
[NFB97] Shree Nayar, Xi-Sheng Fang, and Terrance Boult. Separation of reflection components using color and polarization. International Journal of Computer Vision, 21(3):163–186, 1997.
[NIK90] Shree Nayar, Katsushi Ikeuchi, and Takeo Kanade. Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Transacations on Robotics and Automation, 6(4):418–431, 1990.
[NIK91] Shree Nayar, Katsushi Ikeuchi, and Takeo Kanade. Shape from interreflections. International Journal of Computer Vision, 6(3):173–195, 1991.
[NJS97] Gregory Nielson, Il-Hong Jung, and Junwon Sung. Haar wavelets over triangular domains with applications to multiresolution models for flow over a sphere. In IEEE Visualization, pages 143–149, 1997.
[NRDR05] Diego Nehab, Szymon Rusinkiewicz, James Davis, and Ravi Ramamoorthi. Efficiently combining positions and normals for precise 3d geometry. ACM Transacations on Graphics, 24(3):536–543, 2005.
[NRH03] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shadows using non-linear wavelet lighting approximation. ACM Transacations on Graphics, 22(3):376–381, 2003.
[NRH04] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple product wavelet integrals for all-frequency relighting. ACM Transacations on Graphics, 23(3):477–487, 2004.
[Oat] Christopher Oat. Animated wrinkle maps. In Course Notes for SIGGRAPH 2007 Course 28: Advanced Real-Time Rendering in 3D Graphics and Games, pages 33–37.
[Par72] Frederic Parke. Computer generated animation of faces. Proc. ACM Annual Conference, pages 451–457, 1972.
[PHD06] Pieter Peers, Tim Hawkins, and Paul Debevec. A reflective light stage. University of Southern California Institute for Creative Technologies Technical Report ICT-TR-04.2006, 2006.
[PHL+98] Fr’ed’eric Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and David Salesin. Synthesizing realistic facial expressions from photographs. Proc. SIGGRAPH, pages 75–84, 1998.
[RH01] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance environment maps. In Proc. SIGGRAPH, pages 497–500, 2001.
[RH02] Ravi Ramamoorthi and Pat Hanrahan. Frequency space environment map rendering. ACM Transacations on Graphics, 21(3):517–526, 2002.
[RHHL02] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3D model acquisition. ACM Transacations on Graphics, 21(3):438–446, July 2002.
[Sch93] Karsten Schl‥uns. Photometric stereo for non-lambertian surfaces using color information. In Proc. International Conference on Computer Analysis of Images and Patterns, pages 444–451, 1993.
[SHHS03] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered principal components for precomputed radiance transfer. ACM Transacations on Graphics, 22(3):382–391, 2003.
[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proc. SIGGRAPH, pages 527–536, 2002.
[Slo06] Peter-Pike Sloan. Normal mapping for precomputed radiance transfer. In Symposium on Interactive 3D Graphics and Games, pages 23–26, 2006.
[SLS05] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed radiance transfer. ACM Transacations on Graphics, 24(3):1216–1224, 2005.
[SNF05] Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Transacations on Graphics, 24(3):417–425, 2005.
[SS95a] Peter Schr‥oder and Wim Sweldens. Spherical wavelets: efficiently representing functions on the sphere. In Proc. SIGGRAPH, pages 161–172, 1995.
[SS95b] Peter Schr‥oder and Wim Sweldens. Spherical wavelets: texture processing. In Rendering Techniques (Eurographics Workshop on Rendering), pages 252–263, 1995.
[SWI97] Yoichi Sato, Mark Wheeler, and Katsushi Ikeuchi. Object shape and reflectance modeling from observation. In Proc. SIGGRAPH, pages 379–387, 1997.
[TLGS05] Marco Tarini, Hendrik Lensch, Michael Goesele, and Hans-Peter Seidel. 3D acquisition of mirroring objects using striped patterns. Graphical Models, 67(4):233–259, 2005.
[TS06] Yu-Ting Tsai and Zen-Chung Shih. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. In Proc. SIGGRAPH, pages 967–976, 2006.
[TW90] Demetri Terzopoulos and Keith Waters. Physically-based facial modelling, analysis, and animation. Journal of Visualization and Computer Animation, 1(2):73–80, 1990.
[WGT+05] Andreas Wenger, Andrew Gardner, Chris Tchou, Jonas Unger, Tim Hawkins, and Paul Debevec. Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Transacations on Graphics, 24(3):756–764, 2005.
[Wil90] Lance Williams. Performance-driven facial animation. In Proc. SIGGRAPH, pages 235–242, 1990.
[WLZW04] Ze Wang, Chi-Sing Leung, Yi-Sheng Zhu, and Tien-Tsin Wong. Data compression with spherical wavelets and wavelets for the image-based relighting. Computer Vision and Image Understanding, 96(3):327–344, 2004.
[WMP+06] Tim Weyrich, Wojciech Matusik, Hanspeter Pfister, Bernd Bickel, Craig Donner, Chien Tu, Janet McAndless, Jinho Lee, Addy Ngan, Henrik Wann Jensen, and Markus Gross. Analysis of human faces using a measurement-based skin reflectance model. ACM Transacations on Graphics, 25(3):1013–1024, 2006.
[Wol89a] Lawrence Wolff. Material classification and separation of reflection components using polarization radiometric information. In DARPA, pages 232–244, 1989.
[Wol89b] Lawrence Wolff. Using polarization to separate reflection components. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 363–369, 1989.
[Woo80] Robert Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19(1):139–144, 1980.
[WPP07] Robert Wang, Kari Pulli, and Jovan Popovi’c. Real-time enveloping with rotational regression. ACM Transacations on Graphics, 26(3):73, 2007.
[WTL04] Rui Wang, John Tran, and David Luebke. All-frequency relighting of nondiffuse objects using separable BRDF approximation. In Rendering Techniques (Eurographics Symposium on Rendering), pages 345–354, 2004.
[WTL05] Rui Wang, John Tran, and David Luebke. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Transacations on Graphics, 24(3):1202–1207, 2005.
[WTL06] RuiWang, John Tran, and David Luebke. All-frequency relighting of glossy objects. ACM Transacations on Graphics, 25(2):293–318, 2006.
[ZCS04] Li Zhang, Brian Curless, and Steven Seitz. Rapid shape acquisition using color structured light and multi-pass dynamic programming. In Proc. International Symposium on 3D Data Processing, Visualization, and Transmission, pages 24–36, 2004.
[ZERB05] Todd Zickler, Sebastian Enrique, Ravi Ramamoorthi, and Peter Belhumeur. Reflectance sharing: Image-based rendering from a sparse set of images. In Rendering Techniques (Eurographics Symposium on Rendering), pages 253–264, 2005.
[ZH06] Song Zhang and Peisen Huang. High-resolution, real-time threedimensional shape measurement. Optical Engineering, 45(12):123601–123608, 2006.
[Zha00] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transacations on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.
[ZSCS04] Li Zhang, Noah Snavely, Brian Curless, and Steven Seitz. Spacetime faces: high resolution capture for modeling and animation. ACM Transacations on Graphics, 23(3):548–558, 2004.
[ZWCS99] Douglas Zongker, Dawn Werner, Brian Curless, and David Salesin. Environment matting and compositing. In Proc. SIGGRAPH, pages 205–214, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37299-
dc.description.abstract我們提出了一個擷取與合成高解析度臉部模型與動作的架構。主要的理論基礎在從物體的漫射或是鏡射,可以容許不同的視角,利用具有漸層亮度的照明模式來估計物體表面的法向量。我們展示了從鏡射求得的法向量是最符合物體表面幾何的,並且可以利用在增加模型的精準度上。而從漫射求得的法向量則可以用來計算表面散射結果的近似解。基於上述的理論,我們開發了可以擷取高解析度靜態頭部模型與動態臉部表演的系統。
靜態頭部模型掃描系統利用了一個球體形狀的漸層亮度照明裝置、兩台單眼數位相機與一台投影機。漸層亮度照明裝置用來投射漸層照明在欲掃描的人物上,被相機擷取下來的影像即利用上述的理論求得臉部上面的法向量。兩台相機與一台投影機組成了一個立體視覺系統,並用來擷取主角的粗略臉部模型。我們再利用了一個最佳化程式,利用求得的鏡射求得的法向量,將粗略的模型變成高解析度。
為了更進一步分析臉部如果根據表情的不同而形變,我們擴充了原先的靜態頭部模型掃描系統,使之可以高速的捕捉臉部動作。利用高速投影機與數位攝影機,我們可以達到每秒擷取三十個高解析度臉部模型的速度。我們再提出了一個利用多項式位移圖來建構與合成臉部表情的技術。最後我們提出了根據球體小波轉換來實作的一個繪製架構,並用來繪製擷取的頭部結果。
zh_TW
dc.description.abstractWe present a framework that captures and synthesizes high resolution facial geometry and performance. In order to capture highly detailed surface structures, a theory of fast normal recovery using spherical gradient illumination patterns is presented to estimate surface normal maps of an object from either its diffuse or specular reflectance, simultaneously from any viewpoints. We show that the normal map from specular reflectance yields the best record of detailed surface shape, which can be used for geometry enhancement. Moreover, the normal map from the diffuse reflectance is able to produce a good approximation of subsurface scattering. Based on the theory, two systems are developed to capture high resolution facial geometry of a static face or dynamic facial performance.
The static face scanning system consists of a spherical illumination device, two single lens reflex (SLR) cameras and a video projector. The spherical illumination device is used to cast spherical gradient patterns onto the subject. The captured spherical gradient images are then turned into surface normals of the subject. The two cameras and one projector are used to build a structured-light-assisted two-view stereo system, which acquires a moderate resolution geometry of the subject. We then use the acquired specular normal map to enhance the initial geometry based on an optimization process.
To further analyze how facial geometry deforms during performance, we build another facial performance capture system, which is analogous to the previous face scanning system, but employs two high-speed video cameras and a high-speed projector. The system is able to capture 30 facial geometry measurements per second. A novel method based on polynomial displacement maps is presented to cooperate motion capture with real-time face scans, so that realistic facial deformation can be modeled and synthesized. Finally, we present a real-time relighting algorithm based on spherical wavelets for rendering realistic faces under modern GPU architecture.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:23:45Z (GMT). No. of bitstreams: 1
ntu-97-F89922023-1.pdf: 4788584 bytes, checksum: a55b3c7da2a54f96839d02addac4d0ff (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction 9
1.1 Contribution . . . . . . . . . . . . . . . . . . . 13
1.2 Overview . . . . . . . . . . . . . . . . . . . . . 14
2 Related Works 16
2.1 Photometric Stereo and Extensions . . . . . . . . . 16
2.2 Polarization-Based Analysis of Reflected Light. . . 17
2.3 Reflectance Scanning Techniques . . . . . . . . . . 18
2.4 Real-Time 3D Scanning . . . . . . . . . . . . . . . 19
2.5 Wrinkle Acquisition and Synthesis . . . . . . . . . 20
2.6 Facial Performance Synthesis . . . . . . . . . . . 20
2.7 Polynomial Texture Maps . . . . . . . . . . . . . . 21
2.8 All-Frequency Relighting and Precomputed Radiance Transfer (PRT) 21
3 A Theory of Normal Recovery from Spherical Gradient Illumination 23
3.1 Lambertian Surface Reflection . . . . . . . . . . . 24
3.2 Specular Surface Reflection . . . . . . . . . . . . 27
3.3 Applications . . . . . . . . . . . . . . . . . . . 29
3.3.1 Real-Time Photometric Stereo: Normal Map Capture of Live Performance 29
3.3.2 Normal Map Acquisition of Highly Specular Surfaces 31
3.4 Discussion . . . . . . . . . . . . . . . . . . . . 34
4 Separation of Diffuse and Specular Reflections Using Polarization 39
4.1 Linear Polarization . . . . . . . . . . . . . . . . 40
4.2 Circular Polarization . . . . . . . . . . . . . . . 43
4.3 Normal Map Acquisition System Based on Polarized Spherical Gradient Illumination 45
4.3.1 Illumination Source . . . . . . . . . . . . . . . 45
4.3.2 Data Capture Device . . . . . . . . . . . . . . . 46
4.4 Applications . . . . . . . . . . . . . . . . . . . 47
4.4.1 Geometry Enhancement Using Specular Normals . . . 47
4.4.2 Rendering with Hybrid Normal Mapping . . . . . . 49
5 A System for High Resolution Static Face Scanning 53
5.1 Hardware Setup . . . . . . . . . . . . . . . . . . 54
5.2 Normal Map Processing . . . . . . . . . . . . . . . 56
5.3 Geometry Processing . . . . . . . . . . . . . . . . 57
5.3.1 Camera-Projector Color Correction . . . . . . . . 57
5.3.2 Rectification . . . . . . . . . . . . . . . . . . 58
5.3.3 Stereo Matching . . . . . . . . . . . . . . . . . 59
5.3.4 Generating High-Resolution Geometry . . . . . . . 61
5.4 Creating Fully-Covered Facial Scans . . . . . . . . 62
5.4.1 Merging Partial Scans . . . . . . . . . . . . . . 63
5.4.2 Texture Transferring . . . . . . . . . . . . . . 64
5.5 Results . . . . . . . . . . . . . . . . . . . . . . 65
6 A System for High Resolution Facial Performance Capture 69
6.1 Separating Diffuse and Specular Reflections Under High Frame Rate 71
6.2 Results . . . . . . . . . . . . . . . . . . . . . . 72
7 Facial Deformation Modeling and Synthesis with Polynomial Displacement
Maps 75
7.1 Data Capture . . . . . . . . . . . . . . . . . . . 76
7.2 Deformation-Driven PDMs . . . . . . . . . . . . . . 78
7.3 Parameterizing Low Frequency Deformation . . . . . 79
7.4 Optimal Fitting of PDMs . . . . . . . . . . . . . . 82
7.5 Synthesis of New Facial Geometry Using PDMs . . . . 84
7.6 Results . . . . . . . . . . . . . . . . . . . . . . 85
7.7 Discussion . . . . . . . . . . . . . . . . . . . . 89
8 A Real-Time Relighting Technique for Realistic Face Rendering 92
8.1 Algorithm . . . . . . . . . . . . . . . . . . . . . 94
8.1.1 Spherical wavelets . . . . . . . . . . . . . . . 95
8.1.2 Local-frame parametrization . . . . . . . . . . . 98
8.1.3 Per-pixel shading and visibility texture . . . .101
8.2 Results . . . . . . . . . . . . . . . . . . . . . .104
9 Conclusions and Future Work 109
Bibliography 112
dc.language.isoen
dc.subject臉部動畫zh_TW
dc.subject法向量擷取zh_TW
dc.subject臉部模塑zh_TW
dc.subject立體掃描zh_TW
dc.subject動作捕捉zh_TW
dc.subject即時繪圖zh_TW
dc.subjectfacial modelingen
dc.subjectreal-time renderingen
dc.subjectmotion captureen
dc.subject3D scanningen
dc.subjectnormal acquisitionen
dc.subjectfacial animationen
dc.title一個擷取與合成高解析度臉部模型與動作之架構zh_TW
dc.titleA Framework for Capture and Synthesis of
High Resolution Facial Geometry and Performance
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.coadvisor保羅德比維克(Paul Debevec)
dc.contributor.oralexamcommittee楊熙年,洪一平,莊榮宏,李同益,張鈞法,莊永裕,吳健榕
dc.subject.keyword法向量擷取,臉部動畫,臉部模塑,立體掃描,動作捕捉,即時繪圖,zh_TW
dc.subject.keywordnormal acquisition,facial animation,facial modeling,3D scanning,motion capture,real-time rendering,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2008-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved