Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37286
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳義雄(Yee-Hsiung Chen)
dc.contributor.authorNai-Jia Huangen
dc.contributor.author黃乃家zh_TW
dc.date.accessioned2021-06-13T15:23:25Z-
dc.date.available2013-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citationReference
Anckar, J., and Sistonen, L. (2007). SUMO: getting it on. Biochem Soc Trans 35,
1409-1413.
Beech, S.J., Lethbridge, K.J., Killick, N., McGlincy, N., and Leppard, K.N. (2005).
Isoforms of the promyelocytic leukemia protein differ in their effects on ND10
organization. Experimental cell research 307, 109-117.
Bernardi, R., and Pandolfi, P.P. (2007). Structure, dynamics and functions of
promyelocytic leukaemia nuclear bodies. Nature reviews 8, 1006-1016.
Bernardi, R., Scaglioni, P.P., Bergmann, S., Horn, H.F., Vousden, K.H., and Pandolfi, P.P.
(2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature cell
biology 6, 665-672.
Best, J.L., Ganiatsas, S., Agarwal, S., Changou, A., Salomoni, P., Shirihai, O., Meluh,
P.B., Pandolfi, P.P., and Zon, L.I. (2002). SUMO-1 protease-1 regulates gene
transcription through PML. Molecular cell 10, 843-855.
Blank, I., Baudisch, W., Burmeister, J., and Franz, U. (1990). [Adhesion, migration and
phagocytic behavior of blood granulocytic neutrophils from the rat and humans in
essential hypertension]. Biomedica biochimica acta 49, 235-241.
Bohren, K.M., Nadkarni, V., Song, J.H., Gabbay, K.H., and Owerbach, D. (2004). A
M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat
- 71 -
shock transcription factors and is associated with susceptibility to type I diabetes
mellitus. The Journal of biological chemistry 279, 27233-27238.
Chang, C.C., Lin, D.Y., Fang, H.I., Chen, R.H., and Shih, H.M. (2005). Daxx mediates
the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. The
Journal of biological chemistry 280, 10164-10173.
Chang, H.Y., Nishitoh, H., Yang, X., Ichijo, H., and Baltimore, D. (1998). Activation of
apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science (New
York, NY 281, 1860-1863.
Chang, K.S., Stass, S.A., Chu, D.T., Deaven, L.L., Trujillo, J.M., and Freireich, E.J.
(1992). Characterization of a fusion cDNA (RARA/myl) transcribed from the t(15;17)
translocation breakpoint in acute promyelocytic leukemia. Molecular and cellular
biology 12, 800-810.
Chen, L.Y., and Chen, J.D. (2003). Daxx silencing sensitizes cells to multiple apoptotic
pathways. Molecular and cellular biology 23, 7108-7121.
Chinnaiyan, A.M., O'Rourke, K., Tewari, M., and Dixit, V.M. (1995). FADD, a novel
death domain-containing protein, interacts with the death domain of Fas and initiates
apoptosis. Cell 81, 505-512.
de Stanchina, E., Querido, E., Narita, M., Davuluri, R.V., Pandolfi, P.P., Ferbeyre, G.,
and Lowe, S.W. (2004). PML is a direct p53 target that modulates p53 effector functions.
- 72 -
Molecular cell 13, 523-535.
de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. (1991).
The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute
promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675-684.
Di Croce, L., Raker, V.A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo
Coco, F., Kouzarides, T., Nervi, C., et al. (2002). Methyltransferase recruitment and
DNA hypermethylation of target promoters by an oncogenic transcription factor.
Science (New York, NY 295, 1079-1082.
Dohmen, R.J. (2004). SUMO protein modification. Biochim Biophys Acta 1695,
113-131.
Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade on.
Nature reviews 8, 947-956.
Gibbons, R.J., Pellagatti, A., Garrick, D., Wood, W.G., Malik, N., Ayyub, H., Langford,
C., Boultwood, J., Wainscoat, J.S., and Higgs, D.R. (2003). Identification of acquired
somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the
alpha-thalassemia myelodysplasia syndrome (ATMDS). Nat Genet 34, 446-449.
Gostissa, M., Morelli, M., Mantovani, F., Guida, E., Piazza, S., Collavin, L., Brancolini,
C., Schneider, C., and Del Sal, G. (2004). The transcriptional repressor hDaxx
potentiates p53-dependent apoptosis. The Journal of biological chemistry 279,
- 73 -
48013-48023.
Grignani, F., Gelmetti, V., Fanelli, M., Rogaia, D., De Matteis, S., Ferrara, F.F., Bonci,
D., Grignani, F., Nervi, C., and Pelicci, P.G. (1999). Formation of PML/RAR alpha high
molecular weight nuclear complexes through the PML coiled-coil region is essential for
the PML/RAR alpha-mediated retinoic acid response. Oncogene 18, 6313-6321.
Hofmann, T.G., Stollberg, N., Schmitz, M.L., and Will, H. (2003). HIPK2 regulates
transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and
apoptosis in human hepatoma cells. Cancer Res 63, 8271-8277.
Hollenbach, A.D., McPherson, C.J., Mientjes, E.J., Iyengar, R., and Grosveld, G. (2002).
Daxx and histone deacetylase II associate with chromatin through an interaction with
core histones and the chromatin-associated protein Dek. Journal of cell science 115,
3319-3330.
Hollenbach, A.D., Sublett, J.E., McPherson, C.J., and Grosveld, G. (1999). The
Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. The
EMBO journal 18, 3702-3711.
Ishov, A.M., Vladimirova, O.V., and Maul, G.G. (2004). Heterochromatin and ND10 are
cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the
transcription repressor Daxx and SWI/SNF protein ATRX. Journal of cell science 117,
3807-3820.
- 74 -
Jansen, J.H., Mahfoudi, A., Rambaud, S., Lavau, C., Wahli, W., and Dejean, A. (1995).
Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute
promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator
signaling pathways. Proceedings of the National Academy of Sciences of the United
States of America 92, 7401-7405.
Jensen, P.N., and Major, E.O. (2001). A classification scheme for human polyomavirus
JCV variants based on the nucleotide sequence of the noncoding regulatory region.
Journal of neurovirology 7, 280-287.
Jobson, A.G., Cardellina, J.H., 2nd, Scudiero, D., Kondapaka, S., Zhang, H., Kim, H.,
Shoemaker, R., and Pommier, Y. (2007). Identification of a Bis-guanylhydrazone
[4,4'-Diacetyldiphenylurea-bis(guanylhydrazone); NSC 109555] as a novel chemotype
for inhibition of Chk2 kinase. Molecular pharmacology 72, 876-884.
Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382.
Kambhampati, S., Verma, A., Li, Y., Parmar, S., Sassano, A., and Platanias, L.C. (2004).
Signalling pathways activated by all-trans-retinoic acid in acute promyelocytic leukemia
cells. Leuk Lymphoma 45, 2175-2185.
Kamitani, T., Kito, K., Nguyen, H.P., Wada, H., Fukuda-Kamitani, T., and Yeh, E.T.
(1998). Identification of three major sentrinization sites in PML. The Journal of
biological chemistry 273, 26675-26682.
- 75 -
Kawai, T., Akira, S., and Reed, J.C. (2003). ZIP kinase triggers apoptosis from nuclear
PML oncogenic domains. Molecular and cellular biology 23, 6174-6186.
Khan, M.M., Nomura, T., Kim, H., Kaul, S.C., Wadhwa, R., Shinagawa, T.,
Ichikawa-Iwata, E., Zhong, S., Pandolfi, P.P., and Ishii, S. (2001). Role of PML and
PML-RARalpha in Mad-mediated transcriptional repression. Molecular cell 7,
1233-1243.
Kim, E.J., Park, J.S., and Um, S.J. (2003). Identification of Daxx interacting with p73,
one of the p53 family, and its regulation of p53 activity by competitive interaction with
PML. Nucleic acids research 31, 5356-5367.
Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H.,
and Peter, M.E. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins
form a death-inducing signaling complex (DISC) with the receptor. The EMBO journal
14, 5579-5588.
Kuo, H.Y., Chang, C.C., Jeng, J.C., Hu, H.M., Lin, D.Y., Maul, G.G., Kwok, R.P., and
Shih, H.M. (2005). SUMO modification negatively modulates the transcriptional
activity of CREB-binding protein via the recruitment of Daxx. Proceedings of the
National Academy of Sciences of the United States of America 102, 16973-16978.
Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou,
J., Zhu, J., Raught, B., and de The, H. (2008). Arsenic degrades PML or
- 76 -
PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nature
cell biology.
Li, H., Leo, C., Zhu, J., Wu, X., O'Neil, J., Park, E.J., and Chen, J.D. (2000a).
Sequestration and inhibition of Daxx-mediated transcriptional repression by PML.
Molecular and cellular biology 20, 1784-1796.
Li, R., Pei, H., Watson, D.K., and Papas, T.S. (2000b). EAP1/Daxx interacts with ETS1
and represses transcriptional activation of ETS1 target genes. Oncogene 19, 745-753.
Lin, D.Y., Fang, H.I., Ma, A.H., Huang, Y.S., Pu, Y.S., Jenster, G., Kung, H.J., and Shih,
H.M. (2004). Negative modulation of androgen receptor transcriptional activity by
Daxx. Molecular and cellular biology 24, 10529-10541.
Lin, D.Y., Huang, Y.S., Jeng, J.C., Kuo, H.Y., Chang, C.C., Chao, T.T., Ho, C.C., Chen,
Y.C., Lin, T.P., Fang, H.I., et al. (2006). Role of SUMO-interacting motif in Daxx
SUMO modification, subnuclear localization, and repression of sumoylated
transcription factors. Molecular cell 24, 341-354.
Lin, D.Y., Lai, M.Z., Ann, D.K., and Shih, H.M. (2003). Promyelocytic leukemia
protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx
to the PML oncogenic domains (PODs) to enhance its transactivation potential. The
Journal of biological chemistry 278, 15958-15965.
Lin, D.Y., and Shih, H.M. (2002). Essential role of the 58-kDa microspherule protein in
- 77 -
the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar
sequestration. The Journal of biological chemistry 277, 25446-25456.
Medema, J.P., Scaffidi, C., Kischkel, F.C., Shevchenko, A., Mann, M., Krammer, P.H.,
and Peter, M.E. (1997). FLICE is activated by association with the CD95
death-inducing signaling complex (DISC). The EMBO journal 16, 2794-2804.
Michaelson, J.S., Bader, D., Kuo, F., Kozak, C., and Leder, P. (1999). Loss of Daxx, a
promiscuously interacting protein, results in extensive apoptosis in early mouse
development. Genes Dev 13, 1918-1923.
Michaelson, J.S., and Leder, P. (2003). RNAi reveals anti-apoptotic and
transcriptionally repressive activities of DAXX. Journal of cell science 116, 345-352.
Morozov, V.M., Massoll, N.A., Vladimirova, O.V., Maul, G.G., and Ishov, A.M. (2008).
Regulation of c-met expression by transcription repressor Daxx. Oncogene 27,
2177-2186.
Nervi, C., Ferrara, F.F., Fanelli, M., Rippo, M.R., Tomassini, B., Ferrucci, P.F., Ruthardt,
M., Gelmetti, V., Gambacorti-Passerini, C., Diverio, D., et al. (1998). Caspases mediate
retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha
fusion protein. Blood 92, 2244-2251.
Obradovic, D., Tirard, M., Nemethy, Z., Hirsch, O., Gronemeyer, H., and Almeida, O.F.
(2004). DAXX, FLASH, and FAF-1 modulate mineralocorticoid and glucocorticoid
- 78 -
receptor-mediated transcription in hippocampal cells--toward a basis for the opposite
actions elicited by two nuclear receptorsNULL Molecular pharmacology 65, 761-769.
Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto,
Y., Appella, E., Minucci, S., Pandolfi, P.P., et al. (2000). PML regulates p53 acetylation
and premature senescence induced by oncogenic Ras. Nature 406, 207-210.
Perez, A., Kastner, P., Sethi, S., Lutz, Y., Reibel, C., and Chambon, P. (1993). PMLRAR
homodimers: distinct DNA binding properties and heteromeric interactions with RXR.
The EMBO journal 12, 3171-3182.
Perlman, R., Schiemann, W.P., Brooks, M.W., Lodish, H.F., and Weinberg, R.A. (2001).
TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates
JNK activation. Nature cell biology 3, 708-714.
Petrie, K., and Zelent, A. (2008). Marked for death. Nature cell biology 10, 507-509.
Reineke, E.L., Lam, M., Liu, Q., Liu, Y., Stanya, K.J., Chang, K.S., Means, A.R., and
Kao, H.Y. (2008). Degradation of the tumor suppressor PML by Pin1 contributes to the
cancer phenotype of breast cancer MDA-MB-231 cells. Molecular and cellular biology
28, 997-1006.
Ross, S., Best, J.L., Zon, L.I., and Gill, G. (2002). SUMO-1 modification represses Sp3
transcriptional activation and modulates its subnuclear localization. Molecular cell 10,
831-842.
- 79 -
Salvesen, G.S., and Dixit, V.M. (1999). Caspase activation: the induced-proximity
model. Proceedings of the National Academy of Sciences of the United States of
America 96, 10964-10967.
Seeler, J.S., and Dejean, A. (2001). SUMO: of branched proteins and nuclear bodies.
Oncogene 20, 7243-7249.
Shao, W., Fanelli, M., Ferrara, F.F., Riccioni, R., Rosenauer, A., Davison, K., Lamph,
W.W., Waxman, S., Pelicci, P.G., Lo Coco, F., et al. (1998). Arsenic trioxide as an
inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic
leukemia cells. Journal of the National Cancer Institute 90, 124-133.
Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M., and Pandolfi, P.P. (2006). The
mechanisms of PML-nuclear body formation. Molecular cell 24, 331-339.
Shih, H.M., Chang, C.C., Kuo, H.Y., and Lin, D.Y. (2007). Daxx mediates
SUMO-dependent transcriptional control and subnuclear compartmentalization.
Biochem Soc Trans 35, 1397-1400.
Song, J.J., and Lee, Y.J. (2003). Catalase, but not MnSOD, inhibits glucose
deprivation-activated ASK1-MEK-MAPK signal transduction pathway and prevents
relocalization of Daxx: hydrogen peroxide as a major second messenger of metabolic
oxidative stress. J Cell Biochem 90, 304-314.
Stadler, M., Chelbi-Alix, M.K., Koken, M.H., Venturini, L., Lee, C., Saib, A., Quignon,
- 80 -
F., Pelicano, L., Guillemin, M.C., Schindler, C., et al. (1995). Transcriptional induction
of the PML growth suppressor gene by interferons is mediated through an ISRE and a
GAS element. Oncogene 11, 2565-2573.
Tallman, M.S., Nabhan, C., Feusner, J.H., and Rowe, J.M. (2002). Acute promyelocytic
leukemia: evolving therapeutic strategies. Blood 99, 759-767.
Tatham, M.H., Geoffroy, M.C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E.G.,
Palvimo, J.J., and Hay, R.T. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase
required for arsenic-induced PML degradation. Nature cell biology.
Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, J.H.,
and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to
protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276,
35368-35374.
Torii, S., Egan, D.A., Evans, R.A., and Reed, J.C. (1999). Human Daxx regulates
Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). The EMBO
journal 18, 6037-6049.
Wang, Z.G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., Grosveld,
F., and Pandolfi, P.P. (1998a). Role of PML in cell growth and the retinoic acid pathway.
Science (New York, NY 279, 1547-1551.
Wang, Z.G., Ruggero, D., Ronchetti, S., Zhong, S., Gaboli, M., Rivi, R., and Pandolfi,
- 81 -
P.P. (1998b). PML is essential for multiple apoptotic pathways. Nat Genet 20, 266-272.
Widschwendter, M., Berger, J., Muller, H.M., Zeimet, A.G., and Marth, C. (2001).
Epigenetic downregulation of the retinoic acid receptor-beta2 gene in breast cancer. J
Mammary Gland Biol Neoplasia 6, 193-201.
Xue, Y., Gibbons, R., Yan, Z., Yang, D., McDowell, T.L., Sechi, S., Qin, J., Zhou, S.,
Higgs, D., and Wang, W. (2003). The ATRX syndrome protein forms a
chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia
nuclear bodies. Proceedings of the National Academy of Sciences of the United States
of America 100, 10635-10640.
Yang, S.H., and Sharrocks, A.D. (2004). SUMO promotes HDAC-mediated
transcriptional repression. Molecular cell 13, 611-617.
Yang, X., Khosravi-Far, R., Chang, H.Y., and Baltimore, D. (1997). Daxx, a novel
Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067-1076.
Zelent, A., Guidez, F., Melnick, A., Waxman, S., and Licht, J.D. (2001). Translocations
of the RARalpha gene in acute promyelocytic leukemia. Oncogene 20, 7186-7203.
Zhao, L.Y., Liu, J., Sidhu, G.S., Niu, Y., Liu, Y., Wang, R., and Liao, D. (2004).
Negative regulation of p53 functions by Daxx and the involvement of MDM2. The
Journal of biological chemistry 279, 50566-50579.
Zhong, S., Salomoni, P., Ronchetti, S., Guo, A., Ruggero, D., and Pandolfi, P.P. (2000).
- 82 -
Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway
for apoptosis. The Journal of experimental medicine 191, 631-640.
Zhu, J., Zhou, J., Peres, L., Riaucoux, F., Honore, N., Kogan, S., and de The, H. (2005).
A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer cell
7, 143-153.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37286-
dc.description.abstract骨髓性淋巴癌(PML)和類色素酸接受體α(RARα)的融合造成了急性前骨髓性
白血病(acute promyelocytic leukemia, APL)。類色素酸活性調控下游基因表現影響
了血球的發育,在APL 細胞中,許多corepressor,像NcoR, SMRT, HDACs 與PML、
RARα相互作用而更加抑制了RARα下游基因。此外,最近的研究報導Daxx 與
PML 作用會促使更多的co-repressor 結合到PML-RARα上,此作用是藉著PML 上
的Lys160 site 的小類泛素修飾蛋白(small ubiquitin-like modifier, SUMO)與Daxx
上的特定胺基酸的SUMO interacting motif (SIM)結合,但Daxx 如何和sumoylated
的PML 專一性結合的機制尚未清楚。
在這篇論文中, 我們藉由不同的方法, 得知PML/PML-RARα 上三個
SUMO-acceptor Lys(Lys65, Lys160, Lys490)都會與Daxx 相互作用。並探討了PML
及PML-RARα上三個Lys residue 受SUMO 修飾的不同,訂出了每一個Lys 所代表
的修飾位置,並發現這些Lys 受SUMO 修飾是相互影響的,將Lys 突變成Arg,
會影響其他site 的SUMO 修飾,顯示了PML 上每個Lys 的sumoylation 不是獨立
的。
我們還發現了外加與Daxx SUMO interacting motif (SIM)序列一樣的peptide,
可以有效的回復Daxx 所造成的轉錄抑制,促使RAR 下游基因的表現。將此peptide
加至來自APL 的細胞:NB4 中,可以有效的降低NB4 不正常的生長速度。綜合言
之,本篇論文詳加瞭解了PML 及PML-RARα上的sumoylation 和Daxx 的專一性
結合,更證明了Daxx-SIM 可以當作一個有效抑制APL transformarion 的治療方法。
zh_TW
dc.description.abstractPML (promyelocytic leukemia gene) fused to retinoic acid receptor α (RARα),
derived from the t(15;17) translocation, causes acute promyelocytic leukemia (APL).
Several transcriptional corepressors such as NcoR, SMRT and HDACs were shown to
associate with PML-RARα, leading to transcriptional repression. Besides, recent reports
indicated that Daxx could contribute to transcriptional repression of
PML/RARα-targeted genes via interacting with SUMO modification at Lys160 of PML
portion. The specificity of how Daxx binds to sumoylated PML has not been well
characterized. In this study, we used different approaches to show that all three
SUMO-acceptor Lys sites of PML and PML-RARα are important for Daxx interaction.
In addition, we found that sumoylation level of PML at each Lys acceptor site is
affected by each other when individual sumoylation site was mutated, indicating that
PML sumoylation at each Lys acceptor is not independent. In addition, we found
exogenous Daxx SUMO-interacting motif (SIM) peptide could reverse Daxx-elicited
repression on PML-RARα-mediated reporter activity and could affect APL cell
line-NB4 cells proliferation rate. Together, our studies elucidate the
sumoylation-mediated interaction between PML or PML-RARα and Daxx and provide
the evidence that Daxx-SIM peptide may be considered a potential agent for blocking
APL-mediated transformation phenotype.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:23:25Z (GMT). No. of bitstreams: 1
ntu-97-R95b46013-1.pdf: 3189277 bytes, checksum: 4f99bec1c1301b80a36ce7bea20f2c75 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of Contents
中文摘要......................................................................................................................- 1 -
Abstract .......................................................................................................................- 2 -
I. Introduction.............................................................................................................- 4 -
1. The mysterious Daxx ......................................................................................- 5 -
1.1 The role of Daxx in apoptosis.................................................................- 5 -
1.2 Daxx involves in transcription regulation..............................................- 8 -
2. SUMO protein modification ..........................................................................- 9 -
2.1 The mechanism of reversible sumoylation............................................- 10 -
2.2 SUMO-acceptor sites............................................................................- 11 -
2.3 Non-covalent interaction with SUMO..................................................- 11 -
2.4 The functions of sumoylation modification...........................................- 13 -
3. PML ...............................................................................................................- 14 -
3.1 PML nuclear body ................................................................................- 15 -
4. PML-RARα and APL...................................................................................- 17 -
4.1 The repressive activity of PML-RAR α..................................................- 17 -
4.2 APL Therapy.........................................................................................- 18 -
5. Specific Aims .................................................................................................- 20 -
II.Material and Methods..........................................................................................- 22 -
III. Result...................................................................................................................- 28 -
1. Three sumoylation sites of PML mediate Daxx interaction .....................- 29 -
1.1 Analysis the sumoylation modification of PML....................................- 29 -
1.2 SUMO modification of PML is critical for Daxx interaction...............- 30 -
2. Sumoylation of PML in modulating Daxx activity ....................................- 32 -
2.1 The effect of SUMO-modified PML on Daxx transcriptional repression
activity ........................................................................................................- 32 -
2.2 Sumoylation mutants of PML form abnormal PML NBs......................- 33 -
2.3 The effect of SUMO-modified PML on Daxx recruitment into PML-NBs... -
34 -
2.4 The effect of SUMO-modified PML on Daxx interaction in mammalian
cells.............................................................................................................- 35 -
3. Sumoylation of PML-RARα mediates Daxx interaction ..........................- 36 -
3.1 Analysis the sumoylation modification of PML-RAR α.........................- 36 -
3.2 Daxx represses RARE promoter activity through interaction with
sumoylation on K65 and K490 of PML-RAR α...........................................- 37 -
3.3 Each sumoylation site of PML-RAR α is critical sumoylation sites for the
interaction with Daxx .................................................................................- 37 -
4. The effect of Daxx SIM peptide on cellular events....................................- 39 -
4.1 Daxx SIM peptide can be targeted into PML NBs................................- 39 -
4.2 Daxx-SIM peptide transduction relieves the RARE promoter activity.- 40 -
4.3 The effect of FITC-peptide on cell growth arrest.................................- 40 -
IV. Discussion............................................................................................................- 42 -
1. PML sumoylation and Daxx interaction.....................................................- 43 -
2. PML-RARα and Daxx interaction..............................................................- 46 -
3. Daxx-SIM peptide attenuate APL cells proliferation................................- 48 -
Reference...................................................................................................................- 70 -
Figures
Fig.1 Analysis of PML sumoylation in COS-1 cells..................................................- 51 -
Fig.2 Analysis of PML sumoylation in vitro..............................................................- 52 -
Fig.3 Each sumoylation site contributes to PML and Daxx interaction.....................- 53 -
Fig.4 The inhibition of Daxx-mediated repression by PML is attenuated when sumoylation site is mutated........................................................................................- 54 -
Fig.5 Sumoylation mutants of PML affect PML NBs number and structure.............- 57 -
Fig.6 Sumoylation mutants of PML alter the co-locolization of PML and Daxx......- 61 -
Fig.7 Analysis of PML sumoylation and Daxx interaction with arsenic trioxide treatment.....................................................................................................................- 63 -
Fig.8 Analysis of PML-RARα (L) sumoylation in COS-1 cells................................- 64 -
Fig.9 Daxx mediates PML-RARα-elicited repression on RARE reporter activity....- 65 -
Fig.10 Each sumoylation site is critical for PML-RARα and Daxx interaction........- 66 -
Fig.11 Investigate the localization of FITC-TAT-Daxx-SIM and FITC-TAT-scramble peptides in COS-1 cells..............................................................................................- 67 -
Fig.12 FITC-TAT-Daxx-SIM peptide transduction relieves the RARE promoter activity.- 68 -
Fig.13 FITC-TAT-Daxx-SIM peptide attenuates the cell growth of NB4 cells..........- 69 -
Tables
Table 1. Difference in numbers of PML NBs between sumoylated mutants in Hela cells....................................................................................................................................- 58 -
Table 2. Comparison of the Daxx and PML co-localization rate between different sumoylation mutants in PML -/- cells........................................................................- 62 -
dc.language.isoen
dc.subject骨髓性淋巴癌zh_TW
dc.subject小類泛素修飾蛋白zh_TW
dc.subject死亡結構域相關蛋白zh_TW
dc.subject類色素酸接受體αzh_TW
dc.subjectFas death domain associated protein (Daxx)en
dc.subjectpromyelocytic leukemia (PML)en
dc.subjectacute promyelocytic leukemia (APL)en
dc.subjectsmall ubiquitin-relateden
dc.subjectretinoic acid receptor α (RARα)en
dc.title探討PML及PML-RARα的小類泛素修飾對Daxx結合之專一性zh_TW
dc.titleSpecificity of PML and PML-RARα SUMO modification in recruiting Daxxen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor施修明(Hsiu-Ming Shih)
dc.contributor.oralexamcommittee陳瑞華(Ruey-Hwa Chen),阮麗蓉(Li-Jung Juan)
dc.subject.keyword骨髓性淋巴癌,類色素酸接受體α,死亡結構域相關蛋白,小類泛素修飾蛋白,zh_TW
dc.subject.keywordpromyelocytic leukemia (PML),retinoic acid receptor α (RARα),Fas death domain associated protein (Daxx),acute promyelocytic leukemia (APL),small ubiquitin-related,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2008-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved