Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37277
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高成炎
dc.contributor.authorYao-Lin Changen
dc.contributor.author張耀霖zh_TW
dc.date.accessioned2021-06-13T15:23:12Z-
dc.date.available2010-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citation[1] S. Keles, M. van der Laan, and M. B. Eisen, 'Identification of regulatory elements using a feature selection method,' Bioinformatics, vol. 18, pp. 1167-75, 2002.
[2] S. Hannenhalli and S. Levy, 'Predicting transcription factor synergism,' Nucleic Acids Res, vol. 30, pp. 4278-84, 2002.
[3] A. D. Smith, P. Sumazin, D. Das, and M. Q. Zhang, 'Mining ChIP-chip data for transcription factor and cofactor binding sites,' Bioinformatics, vol. 21 Suppl 1, pp. i403-12, 2005.
[4] H. K. Tsai, H. H. Lu, and W. H. Li, 'Statistical methods for identifying yeast cell cycle transcription factors,' Proc Natl Acad Sci U S A, vol. 102, pp. 13532-7, 2005.
[5] I. Simon, J. Barnett, N. Hannett, C. T. Harbison, N. J. Rinaldi, T. L. Volkert, J. J. Wyrick, J. Zeitlinger, D. K. Gifford, T. S. Jaakkola, and R. A. Young, 'Serial regulation of transcriptional regulators in the yeast cell cycle,' Cell, vol. 106, pp. 697-708, 2001.
[6] V. R. Iyer, C. E. Horak, C. S. Scafe, D. Botstein, M. Snyder, and P. O. Brown, 'Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF,' Nature, vol. 409, pp. 533-8, 2001.
[7] C. E. Horak, N. M. Luscombe, J. Qian, P. Bertone, S. Piccirrillo, M. Gerstein, and M. Snyder, 'Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae,' Genes Dev, vol. 16, pp. 3017-33, 2002.
[8] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young, 'Transcriptional regulatory networks in Saccharomyces cerevisiae,' Science, vol. 298, pp. 799-804, 2002.
[9] A. D. Smith, P. Sumazin, and M. Q. Zhang, 'Identifying tissue-selective transcription factor binding sites in vertebrate promoters,' Proc Natl Acad Sci U S A, vol. 102, pp. 1560-5, 2005.
[10] W. W. Wasserman and A. Sandelin, 'Applied bioinformatics for the identification of regulatory elements,' Nat Rev Genet, vol. 5, pp. 276-87, 2004.
[11] A. E. Kel, E. Gossling, I. Reuter, E. Cheremushkin, O. V. Kel-Margoulis, and E. Wingender, 'MATCH: A tool for searching transcription factor binding sites in DNA sequences,' Nucleic Acids Res, vol. 31, pp. 3576-9, 2003.
[12] H. K. Tsai, G. T. Huang, M. Y. Chou, H. H. Lu, and W. H. Li, 'Method for identifying transcription factor binding sites in yeast,' Bioinformatics, vol. 22, pp. 1675-81, 2006.
[13] H. K. Tsai, M. Y. Chou, C. H. Shih, G. T. Huang, T. H. Chang, and W. H. Li, 'MYBS: a comprehensive web server for mining transcription factor binding sites in yeast,' Nucleic Acids Res, vol. 35, pp. W221-6, 2007.
[14] F. P. Roth, J. D. Hughes, P. W. Estep, and G. M. Church, 'Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation,' Nat Biotechnol, vol. 16, pp. 939-45, 1998.
[15] T. L. Bailey and C. Elkan, 'The value of prior knowledge in discovering motifs with MEME,' Proc Int Conf Intell Syst Mol Biol, vol. 3, pp. 21-9, 1995.
[16] X. S. Liu, D. L. Brutlag, and J. S. Liu, 'An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments,' Nat Biotechnol, vol. 20, pp. 835-9, 2002.
[17] K. Quandt, K. Frech, H. Karas, E. Wingender, and T. Werner, 'MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data,' Nucleic Acids Res, vol. 23, pp. 4878-84, 1995.
[18] G. D. Stormo, 'DNA binding sites: representation and discovery,' Bioinformatics, vol. 16, pp. 16-23, 2000.
[19] I. Abnizova and W. R. Gilks, 'Studying statistical properties of regulatory DNA sequences, and their use in predicting regulatory regions in the eukaryotic genomes,' Brief Bioinform, vol. 7, pp. 48-54, 2006.
[20] A. Hoglund and O. Kohlbacher, 'From sequence to structure and back again: approaches for predicting protein-DNA binding,' Proteome Sci, vol. 2, pp. 3, 2004.
[21] V. V. Bartsevich, J. C. Miller, C. C. Case, and C. O. Pabo, 'Engineered zinc finger proteins for controlling stem cell fate,' Stem Cells, vol. 21, pp. 632-7, 2003.
[22] N. C. Seeman, J. M. Rosenberg, and A. Rich, 'Sequence-specific recognition of double helical nucleic acids by proteins,' Proc Natl Acad Sci U S A, vol. 73, pp. 804-8, 1976.
[23] C. O. Pabo and R. T. Sauer, 'Protein-DNA recognition,' Annu Rev Biochem, vol. 53, pp. 293-321, 1984.
[24] B. W. Matthews, 'Protein-DNA interaction. No code for recognition,' Nature, vol. 335, pp. 294-5, 1988.
[25] C. O. Pabo and R. T. Sauer, 'Transcription factors: structural families and principles of DNA recognition,' Annu Rev Biochem, vol. 61, pp. 1053-95, 1992.
[26] Y. Mandel-Gutfreund, O. Schueler, and H. Margalit, 'Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles,' J Mol Biol, vol. 253, pp. 370-82, 1995.
[27] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, 'The Protein Data Bank,' Nucleic Acids Res, vol. 28, pp. 235-42, 2000.
[28] H. M. Berman, W. K. Olson, D. L. Beveridge, J. Westbrook, A. Gelbin, T. Demeny, S. H. Hsieh, A. R. Srinivasan, and B. Schneider, 'The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids,' Biophys J, vol. 63, pp. 751-9, 1992.
[29] S. J. Klug and M. Famulok, 'All you wanted to know about SELEX,' Mol Biol Rep, vol. 20, pp. 97-107, 1994.
[30] S. A. Wolfe, H. A. Greisman, E. I. Ramm, and C. O. Pabo, 'Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code,' J Mol Biol, vol. 285, pp. 1917-34, 1999.
[31] S. A. Wolfe, E. I. Ramm, and C. O. Pabo, 'Combining structure-based design with phage display to create new Cys(2)His(2) zinc finger dimers,' Structure, vol. 8, pp. 739-50, 2000.
[32] M. J. Buck and J. D. Lieb, 'ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments,' Genomics, vol. 83, pp. 349-60, 2004.
[33] N. M. Luscombe, S. E. Austin, H. M. Berman, and J. M. Thornton, 'An overview of the structures of protein-DNA complexes,' Genome Biol, vol. 1, pp. REVIEWS001, 2000.
[34] T. E. Royce, J. S. Rozowsky, P. Bertone, M. Samanta, V. Stolc, S. Weissman, M. Snyder, and M. Gerstein, 'Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping,' Trends Genet, vol. 21, pp. 466-75, 2005.
[35] R. J. Brooker, 'Genetics: analysis and principles,' 2005.
[36] N. Korzheva, A. Mustaev, M. Kozlov, A. Malhotra, V. Nikiforov, A. Goldfarb, and S. A. Darst, 'A structural model of transcription elongation,' Science, vol. 289, pp. 619-25, 2000.
[37] D. Wang, T. I. Meier, C. L. Chan, G. Feng, D. N. Lee, and R. Landick, 'Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex,' Cell, vol. 81, pp. 341-50, 1995.
[38] G. A. Rice, C. M. Kane, and M. J. Chamberlin, 'Footprinting analysis of mammalian RNA polymerase II along its transcript: an alternative view of transcription elongation,' Proc Natl Acad Sci U S A, vol. 88, pp. 4245-9, 1991.
[39] P. H. von Hippel, 'An integrated model of the transcription complex in elongation, termination, and editing,' Science, vol. 281, pp. 660-5, 1998.
[40] S. Adhya and M. Gottesman, 'Control of transcription termination,' Annu Rev Biochem, vol. 47, pp. 967-96, 1978.
[41] D. I. Friedman, M. J. Imperiale, and S. L. Adhya, 'RNA 3' end formation in the control of gene expression,' Annu Rev Genet, vol. 21, pp. 453-88, 1987.
[42] A. Kornberg, 'DNA replication,' J Biol Chem, vol. 263, pp. 1-4, 1988.
[43] M. J. Davey and M. O'Donnell, 'Mechanisms of DNA replication,' Curr Opin Chem Biol, vol. 4, pp. 581-6, 2000.
[44] J. L. Keck and J. M. Berger, 'DNA replication at high resolution,' Chem Biol, vol. 7, pp. R63-71, 2000.
[45] S. Waga and B. Stillman, 'The DNA replication fork in eukaryotic cells,' Annu Rev Biochem, vol. 67, pp. 721-51, 1998.
[46] R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim, 'Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia,' Science, vol. 230, pp. 1350-4, 1985.
[47] R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, 'Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase,' Science, vol. 239, pp. 487-91, 1988.
[48] D. N. Gopaul and G. D. Duyne, 'Structure and mechanism in site-specific recombination,' Curr Opin Struct Biol, vol. 9, pp. 14-20, 1999.
[49] G. D. Van Duyne, 'A structural view of cre-loxp site-specific recombination,' Annu Rev Biophys Biomol Struct, vol. 30, pp. 87-104, 2001.
[50] F. Guo, D. N. Gopaul, and G. D. van Duyne, 'Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse,' Nature, vol. 389, pp. 40-6, 1997.
[51] H. J. Muller, 'The Relation of Recombination to Mutational Advance,' Mutat Res, vol. 106, pp. 2-9, 1964.
[52] H. Kono and A. Sarai, 'Structure-based prediction of DNA target sites by regulatory proteins,' Proteins, vol. 35, pp. 114-31, 1999.
[53] O. G. Berg and P. H. von Hippel, 'Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters,' J Mol Biol, vol. 193, pp. 723-50, 1987.
[54] O. G. Berg and P. H. von Hippel, 'Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites,' J Mol Biol, vol. 200, pp. 709-23, 1988.
[55] B. Lustig and R. L. Jernigan, 'Consistencies of individual DNA base-amino acid interactions in structures and sequences,' Nucleic Acids Res, vol. 23, pp. 4707-11, 1995.
[56] Y. Takeda, A. Sarai, and V. M. Rivera, 'Analysis of the sequence-specific interactions between Cro repressor and operator DNA by systematic base substitution experiments,' Proc Natl Acad Sci U S A, vol. 86, pp. 439-43, 1989.
[57] A. Sarai and Y. Takeda, 'Lambda repressor recognizes the approximately 2-fold symmetric half-operator sequences asymmetrically,' Proc Natl Acad Sci U S A, vol. 86, pp. 6513-7, 1989.
[58] J. Tanikawa, T. Yasukawa, M. Enari, K. Ogata, Y. Nishimura, S. Ishii, and A. Sarai, 'Recognition of specific DNA sequences by the c-myb protooncogene product: role of three repeat units in the DNA-binding domain,' Proc Natl Acad Sci U S A, vol. 90, pp. 9320-4, 1993.
[59] Q. L. Deng, S. Ishii, and A. Sarai, 'Binding site analysis of c-Myb: screening of potential binding sites by using the mutation matrix derived from systematic binding affinity measurements,' Nucleic Acids Res, vol. 24, pp. 766-74, 1996.
[60] Y. Choo and A. Klug, 'Physical basis of a protein-DNA recognition code,' Curr Opin Struct Biol, vol. 7, pp. 117-25, 1997.
[61] Y. Mandel-Gutfreund and H. Margalit, 'Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites,' Nucleic Acids Res, vol. 26, pp. 2306-12, 1998.
[62] P. V. Benos, A. S. Lapedes, and G. D. Stormo, 'Is there a code for protein-DNA recognition? Probab(ilistical)ly,' Bioessays, vol. 24, pp. 466-75, 2002.
[63] C. O. Pabo and L. Nekludova, 'Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition?,' J Mol Biol, vol. 301, pp. 597-624, 2000.
[64] J. C. Miller and C. O. Pabo, 'Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition,' J Mol Biol, vol. 313, pp. 309-15, 2001.
[65] J. J. Havranek, C. M. Duarte, and D. Baker, 'A simple physical model for the prediction and design of protein-DNA interactions,' J Mol Biol, vol. 344, pp. 59-70, 2004.
[66] A. V. Morozov, J. J. Havranek, D. Baker, and E. D. Siggia, 'Protein-DNA binding specificity predictions with structural models,' Nucleic Acids Res, vol. 33, pp. 5781-98, 2005.
[67] M. L. Bulyk, 'Computational prediction of transcription-factor binding site locations,' Genome Biol, vol. 5, pp. 201, 2003.
[68] S. Ahmad, M. M. Gromiha, and A. Sarai, 'Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information,' Bioinformatics, vol. 20, pp. 477-86, 2004.
[69] W. B. Alkema, B. Lenhard, and W. W. Wasserman, 'Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus,' Genome Res, vol. 14, pp. 1362-73, 2004.
[70] A. J. Walhout, S. J. Boulton, and M. Vidal, 'Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm,' Yeast, vol. 17, pp. 88-94, 2000.
[71] A. J. Walhout, R. Sordella, X. Lu, J. L. Hartley, G. F. Temple, M. A. Brasch, N. Thierry-Mieg, and M. Vidal, 'Protein interaction mapping in C. elegans using proteins involved in vulval development,' Science, vol. 287, pp. 116-22, 2000.
[72] L. R. Matthews, P. Vaglio, J. Reboul, H. Ge, B. P. Davis, J. Garrels, S. Vincent, and M. Vidal, 'Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or 'interologs',' Genome Res, vol. 11, pp. 2120-6, 2001.
[73] H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal, and M. Gerstein, 'Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs,' Genome Res, vol. 14, pp. 1107-18, 2004.
[74] M. Michael Gromiha, J. G. Siebers, S. Selvaraj, H. Kono, and A. Sarai, 'Intermolecular and intramolecular readout mechanisms in protein-DNA recognition,' J Mol Biol, vol. 337, pp. 285-94, 2004.
[75] C. R. Vinson, P. B. Sigler, and S. L. McKnight, 'Scissors-grip model for DNA recognition by a family of leucine zipper proteins,' Science, vol. 246, pp. 911-6, 1989.
[76] S. C. Harrison, 'A structural taxonomy of DNA-binding domains,' Nature, vol. 353, pp. 715-9, 1991.
[77] P. F. Johnson and S. L. McKnight, 'Eukaryotic transcriptional regulatory proteins,' Annu Rev Biochem, vol. 58, pp. 799-839, 1989.
[78] Y. Tsuchiya, K. Kinoshita, and H. Nakamura, 'Structure-based prediction of DNA-binding sites on proteins using the empirical preference of electrostatic potential and the shape of molecular surfaces,' Proteins, vol. 55, pp. 885-94, 2004.
[79] N. Bhardwaj, R. E. Langlois, G. Zhao, and H. Lu, 'Kernel-based machine learning protocol for predicting DNA-binding proteins,' Nucleic Acids Res, vol. 33, pp. 6486-93, 2005.
[80] N. Bhardwaj and H. Lu, 'Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions,' FEBS Lett, vol. 581, pp. 1058-66, 2007.
[81] X. Yu, J. Cao, Y. Cai, T. Shi, and Y. Li, 'Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines,' J Theor Biol, vol. 240, pp. 175-84, 2006.
[82] A. Szilagyi and J. Skolnick, 'Efficient prediction of nucleic acid binding function from low-resolution protein structures,' J Mol Biol, vol. 358, pp. 922-33, 2006.
[83] S. Ahmad and A. Sarai, 'PSSM-based prediction of DNA binding sites in proteins,' BMC Bioinformatics, vol. 6, pp. 33, 2005.
[84] I. B. Kuznetsov, Z. Gou, R. Li, and S. Hwang, 'Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins,' Proteins, vol. 64, pp. 19-27, 2006.
[85] H. Tjong and H. X. Zhou, 'DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces,' Nucleic Acids Res, vol. 35, pp. 1465-77, 2007.
[86] N. M. Luscombe and J. M. Thornton, 'Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity,' J Mol Biol, vol. 320, pp. 991-1009, 2002.
[87] E. W. Stawiski, L. M. Gregoret, and Y. Mandel-Gutfreund, 'Annotating nucleic acid-binding function based on protein structure,' J Mol Biol, vol. 326, pp. 1065-79, 2003.
[88] S. Henikoff and J. G. Henikoff, 'Amino acid substitution matrices from protein blocks,' Proc Natl Acad Sci U S A, vol. 89, pp. 10915-9, 1992.
[89] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, 'SCOP: a structural classification of proteins database for the investigation of sequences and structures,' J Mol Biol, vol. 247, pp. 536-40, 1995.
[90] N. M. Luscombe, R. A. Laskowski, and J. M. Thornton, 'Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level,' Nucleic Acids Res, vol. 29, pp. 2860-74, 2001.
[91] L. Holm and C. Sander, 'Protein structure comparison by alignment of distance matrices,' J Mol Biol, vol. 233, pp. 123-38, 1993.
[92] W. R. Pearson and D. J. Lipman, 'Improved tools for biological sequence comparison,' Proc Natl Acad Sci U S A, vol. 85, pp. 2444-8, 1988.
[93] W. R. Pearson, 'Effective protein sequence comparison,' Methods Enzymol, vol. 266, pp. 227-58, 1996.
[94] W. R. Pearson, 'Flexible sequence similarity searching with the FASTA3 program package,' Methods Mol Biol, vol. 132, pp. 185-219, 2000.
[95] T. F. Smith, 'The art of matchmaking: sequence alignment methods and their structural implications,' Structure, vol. 7, pp. R7-R12, 1999.
[96] J. Skolnick and J. S. Fetrow, 'From genes to protein structure and function: novel applications of computational approaches in the genomic era,' Trends Biotechnol, vol. 18, pp. 34-9, 2000.
[97] S. B. Needleman and C. D. Wunsch, 'A general method applicable to the search for similarities in the amino acid sequence of two proteins,' J Mol Biol, vol. 48, pp. 443-53, 1970.
[98] T. F. Smith and M. S. Waterman, 'Identification of common molecular subsequences,' J Mol Biol, vol. 147, pp. 195-7, 1981.
[99] K. Karplus, C. Barrett, and R. Hughey, 'Hidden Markov models for detecting remote protein homologies,' Bioinformatics, vol. 14, pp. 846-56, 1998.
[100] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 'Basic local alignment search tool,' J Mol Biol, vol. 215, pp. 403-10, 1990.
[101] U. Hobohm and C. Sander, 'Enlarged representative set of protein structures,' Protein Sci, vol. 3, pp. 522-4, 1994.
[102] J. M. Passner, H. D. Ryoo, L. Shen, R. S. Mann, and A. K. Aggarwal, 'Structure of a DNA-bound Ultrabithorax-Extradenticle homeodomain complex,' Nature, vol. 397, pp. 714-9, 1999.
[103] N. A. LaRonde-LeBlanc and C. Wolberger, 'Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior,' Genes Dev, vol. 17, pp. 2060-72, 2003.
[104] R. N. Dutnall, S. T. Tafrov, R. Sternglanz, and V. Ramakrishnan, 'Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily,' Cell, vol. 94, pp. 427-38, 1998.
[105] D. C. Williams, Jr., M. Cai, and G. M. Clore, 'Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex,' J Biol Chem, vol. 279, pp. 1449-57, 2004.
[106] A. S. Konagurthu, J. C. Whisstock, P. J. Stuckey, and A. M. Lesk, 'MUSTANG: a multiple structural alignment algorithm,' Proteins, vol. 64, pp. 559-74, 2006.
[107] G. Winter and C. Milstein, 'Man-made antibodies,' Nature, vol. 349, pp. 293-9, 1991.
[108] L. Riechmann and G. Winter, 'Novel folded protein domains generated by combinatorial shuffling of polypeptide segments,' Proc Natl Acad Sci U S A, vol. 97, pp. 10068-73, 2000.
[109] Y. Choo and A. Klug, 'Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions,' Proc Natl Acad Sci U S A, vol. 91, pp. 11168-72, 1994.
[110] Y. Choo and A. Klug, 'Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage,' Proc Natl Acad Sci U S A, vol. 91, pp. 11163-7, 1994.
[111] B. Ren, F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin, T. L. Volkert, C. J. Wilson, S. P. Bell, and R. A. Young, 'Genome-wide location and function of DNA binding proteins,' Science, vol. 290, pp. 2306-9, 2000.
[112] J. D. Lieb, X. Liu, D. Botstein, and P. O. Brown, 'Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association,' Nat Genet, vol. 28, pp. 327-34, 2001.
[113] Z. Liu, F. Mao, J. T. Guo, B. Yan, P. Wang, Y. Qu, and Y. Xu, 'Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential,' Nucleic Acids Res, vol. 33, pp. 546-58, 2005.
[114] Y. L. Chang, H. K. Tsai, C. Y. Kao, Y. C. Chen, Y. J. Hu, and J. M. Yang, 'Evolutionary conservation of DNA-contact residues in DNA-binding domains,' BMC Bioinformatics, vol. 9 Suppl 6, pp. S3, 2008.
[115] I. N. Shindyalov and P. E. Bourne, 'Protein structure alignment by incremental combinatorial extension (CE) of the optimal path,' Protein Eng, vol. 11, pp. 739-47, 1998.
[116] T. Clackson and J. A. Wells, 'A hot spot of binding energy in a hormone-receptor interface,' Science, vol. 267, pp. 383-6, 1995.
[117] B. C. Cunningham and J. A. Wells, 'Rational design of receptor-specific variants of human growth hormone,' Proc Natl Acad Sci U S A, vol. 88, pp. 3407-11, 1991.
[118] K. S. Thorn and A. A. Bogan, 'ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions,' Bioinformatics, vol. 17, pp. 284-5, 2001.
[119] M. J. Tsai and B. W. O'Malley, 'Molecular mechanisms of action of steroid/thyroid receptor superfamily members,' Annu Rev Biochem, vol. 63, pp. 451-86, 1994.
[120] G. A. Brent, 'The molecular basis of thyroid hormone action,' N Engl J Med, vol. 331, pp. 847-53, 1994.
[121] F. Rastinejad, T. Perlmann, R. M. Evans, and P. B. Sigler, 'Structural determinants of nuclear receptor assembly on DNA direct repeats,' Nature, vol. 375, pp. 203-11, 1995.
[122] G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, 'WebLogo: a sequence logo generator,' Genome Res, vol. 14, pp. 1188-90, 2004.
[123] I. K. McDonald and J. M. Thornton, 'Satisfying hydrogen bonding potential in proteins,' J Mol Biol, vol. 238, pp. 777-93, 1994.
[124] C. W. Garvie and S. E. Phillips, 'Direct and indirect readout in mutant Met repressor-operator complexes,' Structure, vol. 8, pp. 905-14, 2000.
[125] M. M. Gromiha, H. Uedaira, J. An, S. Selvaraj, P. Prabakaran, and A. Sarai, 'ProTherm, Thermodynamic Database for Proteins and Mutants: developments in version 3.0,' Nucleic Acids Res, vol. 30, pp. 301-2, 2002.
[126] P. Prabakaran, J. An, M. M. Gromiha, S. Selvaraj, H. Uedaira, H. Kono, and A. Sarai, 'Thermodynamic database for protein-nucleic acid interactions (ProNIT),' Bioinformatics, vol. 17, pp. 1027-34, 2001.
[127] M. D. Kumar, K. A. Bava, M. M. Gromiha, P. Prabakaran, K. Kitajima, H. Uedaira, and A. Sarai, 'ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions,' Nucleic Acids Res, vol. 34, pp. D204-6, 2006.
[128] A. A. Bogan and K. S. Thorn, 'Anatomy of hot spots in protein interfaces,' J Mol Biol, vol. 280, pp. 1-9, 1998.
[129] X. Li, O. Keskin, B. Ma, R. Nussinov, and J. Liang, 'Protein-protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking,' J Mol Biol, vol. 344, pp. 781-95, 2004.
[130] A. Klug and D. Rhodes, 'Zinc fingers: a novel protein fold for nucleic acid recognition,' Cold Spring Harb Symp Quant Biol, vol. 52, pp. 473-82, 1987.
[131] J. M. Berg, 'Zinc finger domains: hypotheses and current knowledge,' Annu Rev Biophys Biophys Chem, vol. 19, pp. 405-21, 1990.
[132] J. Miller, A. D. McLachlan, and A. Klug, 'Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes,' Embo J, vol. 4, pp. 1609-14, 1985.
[133] J. R. Desjarlais and J. M. Berg, 'Length-encoded multiplex binding site determination: application to zinc finger proteins,' Proc Natl Acad Sci U S A, vol. 91, pp. 11099-103, 1994.
[134] M. Elrod-Erickson, M. A. Rould, L. Nekludova, and C. O. Pabo, 'Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions,' Structure, vol. 4, pp. 1171-80, 1996.
[135] P. A. Pevzner and S. H. Sze, 'Combinatorial approaches to finding subtle signals in DNA sequences,' Proc Int Conf Intell Syst Mol Biol, vol. 8, pp. 269-78, 2000.
[136] G. Z. Hertz and G. D. Stormo, 'Identifying DNA and protein patterns with statistically significant alignments of multiple sequences,' Bioinformatics, vol. 15, pp. 563-77, 1999.
[137] J. Buhler and M. Tompa, 'Finding motifs using random projections,' J Comput Biol, vol. 9, pp. 225-42, 2002.
[138] B. Raphael, L. T. Liu, and G. Varghese, 'A uniform projection method for motif discovery in DNA sequences,' IEEE/ACM Trans Comput Biol Bioinform, vol. 1, pp. 91-4, 2004.
[139] A. M. Miller, V. L. MacKay, and K. A. Nasmyth, 'Identification and comparison of two sequence elements that confer cell-type specific transcription in yeast,' Nature, vol. 314, pp. 598-603, 1985.
[140] T. Li, M. R. Stark, A. D. Johnson, and C. Wolberger, 'Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA,' Science, vol. 270, pp. 262-9, 1995.
[141] D. W. Russell, R. Jensen, M. J. Zoller, J. Burke, B. Errede, M. Smith, and I. Herskowitz, 'Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region,' Mol Cell Biol, vol. 6, pp. 4281-94, 1986.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37277-
dc.description.abstract蛋白質與 DNA 的交互作用在生物體內的機制中扮演非常關鍵的角色,這些機制包括:基因轉錄、基因重組、基因複製及DNA修復。尋找可能的蛋白質與DNA之結合配對有助於了解細胞中的調控網路,而這也是後基因體時期的重要工作。利用實驗方法來找尋可能的配對通常是昂貴且耗時的,因此我們提出一個三維regulog 的方法來預測可能的結合配對。我們的方法並提供配對的結合模型及交互作用的胺基酸及核苷酸。
我們提出一個新的計分方法來搭配三維regulog。此計分法結合了與DNA交互作用的殘基 (residue) 之演化保留以及胺基酸及核苷酸之結合傾向。我們的方法在辨識66個與DNA結合的蛋白質家族時有很高的準確率 (precision) 跟求全率(recall)。另一方面,使用我們的方法在預測蛋白質的熱點 (hotspot) 能量時亦有不錯的準確率。我們的方法並在多特定結合 (multi-specific) 蛋白質家族中亦有不錯的辨識度。
我們更進一步提出一個以知識為基(knowledge-based)的計分矩陣來增進原有計分方法的效能。使用此新的計分矩陣可讓我們預測蛋白質與DNA的結合力(binding affinity),我們在多個不同的測試資料中都有到很好的表現,包括蛋白質與DNA的結晶結構、丙胺酸掃瞄 (Alanine-scaning) 及鋅指蛋白質 (zinc finger protein) 之實驗資料。 我們並用此方法掃瞄酵母菌HO基因的啟動子 (promoter)並找出可能的轉譯結合區(transcription factor binding sites)。
zh_TW
dc.description.abstractProtein-DNA interaction plays a key role in living organisms of many genetic activities such as transcription, recombination, DNA replication and repair. Finding binding pairs of proteins and DNA can help us to understand the regulatory pathway of a cell which is an important task of the post-genomic era. Experimental approaches for finding such pairs usually expensive and time-consuming. We propose computational approach called “3D-regulogs” to large scale infer protein-DNA binding partners by using the concept of regulog and the crystal structures of protein-DNA complex as templates. Such method also provides the binding model and interacting amino acids and DNA bases of predicted partners.
The 3D-regulogs uses a scoring method which combines the evolutionary conservation of DNA-contact residues and the preference of interacting residues and nucleotides to evaluate protein-DNA binding partners. By applying the scoring method, we achieve high precision and recall for 66 families of DNA-binding domains, with a false positive rate less than 5% for 250 non-DNA-binding proteins. We also obtained high accuracy in predicting binding free energy of hotspot mutation sets. By testing the regulog mapping of multi-specific families, our method showed good performance to identify proteins with distinct DNA-binding specificity.
For further enhancing the interaction term of the scoring function, we proposed a novel knowledge-based scoring matrix. By using such proposed scoring method, it achieved high correlation with binding affinities of several test sets, including complexes extracted from PRONIT, the Alanine-scanning set, and the base mutation set of zinc finger proteins. We also use the scoring method to scan promoter regions of yeast HO gene and obtained potential transcription factor binding sites.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:23:12Z (GMT). No. of bitstreams: 1
ntu-97-F89922083-1.pdf: 2006127 bytes, checksum: a13b304b9fda010990896c92e77ca3cd (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAbstract iii
Chapter 1
Introduction 1
1.1 Motivation 1
1.2 Biological Importance of Protein-DNA Interaction 2
1.2.1 Transcription 2
1.2.2 Replication 2
1.2.3 Recombination 3
1.3 Background 3
1.4 Template-based approach to model protein-DNA interactions 5
1.5 Interologs and Regulogs 7
1.6 Thesis organization 9
Chapter 2 Evolutionary conservation of DNA- contact residues in DNA-binding domains 10
2.1 Introduction 10
2.2 Method 11
2.2.1 Template library 12
2.2.3 Scoring method 13
2.3 Results 13
2.3.1 Positive and negative set for each contact domain 13
2.3.2 Determining the threshold of similar DNA-binding function of a contact domain 14
2.3.3 Non-DNA-binding proteins 15
2.4 Discussion 16
2.5 Summary 21
Chapter 3 Evolutionary conservation and Interacting preference for identifying protein-DNA interactions 22
3.1 Introduction 22
3.2 Method 24
3.2.1 Template preparation 24
3.2.2 Alignment Tools 25
3.2.3 Scoring function 25
3.3 Result 27
3.3.1 Identifying DNA-binding domains 27
3.2.2 Free energy prediction between proteins and DNAs 30
3.4 Discussion 31
3.4.1 Hormone receptor family 31
Chapter 4 Knowledge-based Scoring Function for Binding Affinity Prediction 35
4.1 Introduction 35
4.1.1 Residue-based binding model of protein-DNA complexes 35
4.1.2 Scoring matrix construction 38
4.2 Scoring Method 41
4.3 General prediction of protein-DNA binding affinities 41
4.4 Energy evaluation on Alanine-scanning proteins 44
4.5 Binding affinity prediction of zinc finger proteins 46
4.5.1 Zinc finger domain 46
4.5.2 Experimental binding affinities of zinc finger proteins 46
4.5.3 Evaluation with experimental data 47
4.6 Transcription factor binding sites detection 48
4.7 Summary 51
Chapter 5 Regulogs mapping of DNA-binding protein families 52
5.1 Classes of DNA-binding protein families 52
5.2 Dataset 54
5.3 Result 54
5.3.1 Identification of positive proteins 54
5.3.2 Determination of Z-score thresholds 55
5.4 Summary 57
Chapter 6 Conclusion 58
6.1 Summary 58
6.2 Future work 59
Bibliography 60
Appendix A 75
List of Publications 75
dc.language.isoen
dc.title以三維regulog之方法預測蛋白質與DNA之交互作用及模型zh_TW
dc.titleA 3D-regulog approach to predict protein-DNA binding partners and binding modelen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.coadvisor楊進木
dc.contributor.oralexamcommittee黃奇英,蔡懷寬,朱學亭
dc.subject.keyword調控網路,演化保留,熱點,鋅指蛋白質,啟動子,zh_TW
dc.subject.keywordregulogs,evolutionary conservation,binding affinity,Alanine-scanning,zinc finger protein,promoter,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2008-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved