請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鴻基(Hung-Chi Kuo) | |
| dc.contributor.author | Cheng-Yu Chen | en |
| dc.contributor.author | 陳政友 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:14Z | - |
| dc.date.available | 2019-08-30 | |
| dc.date.available | 2021-05-13T08:36:14Z | - |
| dc.date.copyright | 2016-08-30 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-16 | |
| dc.identifier.citation | [1] Baba, Y., and K. Takahashi, 2013 : Weighted essentially non-oscillatory scheme for cloud edge problem. Q. J. R. Meteorol. Soc., 139, 1374–1388.
[2] Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C., Graber, O. B. Brown, and E. S. Saltzman, 2004 : On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460. [3] Durran, D. R., 2010 : Numerical Methods for Fluid Dynamics, Texts in Applied Mathematics, Vol. 32 2nd ed., Springer, 516 pp. [4] Ghosh, D. and J. D. Baeder, 2012 : Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput., 34(3), A1678–A1706. [5] Hack, J. J., and W. H. Schubert, 1986 : Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559-1573. [6] Harten, A., B. Engquist, S. Osher, and S. Chakravarthy, 1987 : Uniformly high order essentially non oscillatory schemes, III. J. Comput. Phys., 71, 231–303. [7] Hendricks, E. A., W. H. Schubert, S. R. Fulton, and B. D. McNoldy, 2010 : Spontaneous-adjustment emission of inertia-gravity waves by unsteady vortical motion in the hurricane core. Q. J. R. Meteorol. Soc., 136: 537 – 548. [8] Henrick, A. K., T. D. Aslam, and J. M. Powers, 2005 : Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys., 207, 542–567. [9] Houze, R. A., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007 : Hurricane intensity and eyewall replacement. Science, 315, 1235–1239. [10] Jiang, G.-S., and C.-W. Shu, 1996 : Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126, 202-228. [11] Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004 : The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722-2734. [12] Kuo, H.-C., and R. T. Williams, 1990 : Semi-Lagrangian solutions to the inviscid Burgers equation. Mon. Wea. Rev., 118, 1278-1288. [13] Kuo, H.-C., R. T. Williams, and J. H. Chen, 1999 : A possible mechanism for eye rotation of typhoon herb. J. Atoms. Sci., 56, 1659-1673. [14] Kuo, H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008 : Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183-5198. [15] Large, W. G., J. C. McWilliams, and S. C. Doney, 1994 : Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32(4), 363–403. [16] Liu, X., S. Osher, and T. Chan, 1994 : Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115, 200–212. [17] Ooyama, K., 1969 : Numerical simulation of life cycle of tropical cyclones. J. Atmos. Sci., 26, 3-40. [18] Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003 : Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283. [19] Qiu, J., Z.-L. Gu, Z.-S. Wang, 2008 : Numerical Study of the Response of an Atmospheric Surface Layer to a Spatially Nonuniform Plant Canopy. Bound.-Layer Meteor. 127, 293–311. [20] Shapiro, L. J., 1983 : The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 1984–1998. [21] Shu, C.-W., 1998 : Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni, Ed., No.1697, Lecture Notes in Mathematics, Springer, 325-432. [22] Schubert, W. H., and J. J. Hack, 1982 : Inertial stability and tropical cyclone development. J. Atoms. Sci., 39, 1687-1697. [23] Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011 : Intensity and Structure Changes during Hurricane Eyewall Replacement Cycles. Mon. Wea. Rev., 139, 3829-3847. [24] Takaca, L. L., 1985 : A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Mon. Wea. Rev., 113,1050-1065. [25] Williams, G. J., R. K. Taft, B.D. Mcnoldy, and W. H. Schubert, 2013 : Shock-like structures in the tropical cyclone boundary layer. J. Adv. Model. Earth Syst., 5, 338-353. [26] 柳再明,郭鴻基,1995:半拉格朗日法與正定義數值方法之比較。大氣科學,23,35-63。 [27] 程維毅,2014:颱風邊界層震波狀結構探討。國立台灣大學大氣科學研究所碩士論文,85頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3726 | - |
| dc.description.abstract | 颱風觀測中可以發現,邊界層的風場具有高梯度的似震結構特徵。Williams et al. (2013) 工作中以軸對稱單層邊界層模式中,具有 u ∂u/∂r 項而能夠掌握似震結構。
為了能夠更精確的模擬似震結構,我們研究WENO5 (Weighted Essentially Non-Oscillatory)、CRWENO5 (Compact Reconstruction WENO5) 以及CRWENO5-LD (CRWENO5-Low Dissipation)。並且與四階中差分法以及傅立葉波譜法做比較。我們也研究這些方法的收斂特性,以及二維理想流場中的物理量保守特性。 Williams et al. (2013) 在其邊界層模式中假設為軸對稱。然而,在觀測中可以發現,颱風邊界層內的似震結構也具有高度的不對稱性。為了探討颱風邊界層內的不對稱似震結構,我們將Williams et al. (2013) 的邊界層模式改寫成卡式座標,並且耦合淺水模式。我們發現,單眼牆颱風較大的上升速度,發生在慣性穩定度較大的區域,這可能表示,單眼牆颱風邊界層內的似震結構,對於颱風的增強有重要的影響。 在雙眼牆實驗中,我們發現moat較小的雙眼牆結構,內眼牆上升速度較小,且moat的下降速度較強。由於此為乾模式,實驗結果顯示,邊界層內的似震結構也傾向於增強外眼牆,並減弱內眼牆。另外,在其他的實驗中,我們也發現雙眼牆颱風的核心渦旋的渦度結構,對於內、外眼牆上升速度的分布有重要的影響。 本研究結果顯示,除了邊界層內的熱力過程,動力過程所導致的似震結構,對颱風的強度與結構也有重要的影響。 | zh_TW |
| dc.description.abstract | Observations of tropical cyclones reveal high-gradient shock-like structures in its boundary layer. Williams et al. (2013) proposed an axisymmetric slab boundary layer model with a u ∂u/∂r term which is capable of simulating such shock-like structures.
In order to simulate the shock structures most accurately, study the numerical shock capturing methods WENO5 (Weighted Essentially Non-Oscillatory fifth-order), CRWENO5 (Compact Reconstruction WENO5) and CRWENO5-LD (CRWENO5-Low Dissipation). We compare these methods with a fourth-order finite difference scheme and with the Fourier spectral method. We also study their convergence behavior and conservations of physical quantities in the two dimensional ideal flow field. The boundary layer model of Williams et al. (2013) is formulated assuming axisymmetry. However, observational evidence suggests that the shock-like structures found in the boundary layers of real tropical cyclones can far from axisymmetric. Here, we transform the axisymmetric slab boundary layer model of Williams et al. (2013) to Cartesian coordinates and couple it with shallow water model in order to study asymmetric shock-like structures in the boundary layer of a tropical cyclone. We find that large updrafts occur in the region of large inertial instability of tropical cyclones with single eyewall. This may indicate that updrafts associated with shock-like structures play an important role in the intensification of tropical cyclones with a single eyewall. In our experiments with concentric eyewall, we found weaker updrafts at the inner eyewall and stronger downward motion in the moat region for a smaller moat size. Since this study employs a dry model, the results indicate that shock-like structures in the boundary layer also tend to intensify the outer eyewall and weaken the inner eyewall. In the other experiment, we found that the vorticity structure inside the core vortex of a concentric eyewall structure significantly affects the vertical velocity distribution at the inner and outer eyewalls. The results in this study indicate that not only thermodynamic processes but also shock-like structures associated with dynamical processes would significantly affect structures and intensity of tropical cyclones. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:14Z (GMT). No. of bitstreams: 1 ntu-105-R03229003-1.pdf: 6553990 bytes, checksum: 1170eff92e1a869efe27b416bf78acb6 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 xiii 第1章 前言 1 1.1 研究背景 1 1.2 研究目的與動機 2 第2章 數值方法 4 2.1 簡介 4 2.2 空間差分 5 2.2.1 WENO5 7 2.2.2 CRWENO5 10 2.2.3 CRWENO5-LD 11 2.3 時間差分 12 第3章 數值實驗 14 3.1 一維線性平流實驗 14 3.2 柏格斯方程式實驗 16 3.3 二維剛體旋轉平流實驗 17 第4章 模式與實驗設計 21 4.1 輻散正壓模式 21 4.2 單層邊界層模式結合輻散正壓模式 22 4.2.1 軸對稱單層邊界層模式 22 4.2.2 卡式座標單層邊界層模式 25 4.3 模式設定 27 4.4 模式測試與數值方法比較 28 4.5 實驗設計 30 4.5.1 橢圓形渦旋 30 4.5.2 雙眼牆實驗 30 4.5.3 三極渦旋 31 第5章 實驗結果 34 5.1 橢圓形渦旋 34 5.2 雙眼牆實驗 35 5.3 三極渦旋 36 第6章 總結 38 圖 42 表 88 參考文獻 93 附錄 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | WENO5 | zh_TW |
| dc.subject | 淺水模式 | zh_TW |
| dc.subject | 颱風邊界層 | zh_TW |
| dc.subject | 似震結構 | zh_TW |
| dc.subject | 雙眼牆 | zh_TW |
| dc.subject | concentric eyewall | en |
| dc.subject | WENO5 | en |
| dc.subject | shock-like structure | en |
| dc.subject | shallow water model | en |
| dc.subject | tropical cyclone boundary layer | en |
| dc.title | 颱風邊界層似震結構對於颱風眼牆演變的影響探討 | zh_TW |
| dc.title | The Influence of Typhoon Boundary Layer Shock-like Structures on Evolutions of Typhoon Eyewalls | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳泰然(Tai-Jen Chen) | |
| dc.contributor.oralexamcommittee | 楊明仁(Ming-Jen Yang) | |
| dc.subject.keyword | WENO5,淺水模式,颱風邊界層,似震結構,雙眼牆, | zh_TW |
| dc.subject.keyword | WENO5,shallow water model,tropical cyclone boundary layer,shock-like structure,concentric eyewall, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU201602609 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 6.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
