Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37252
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉緒宗(Shiuh-Tzung liu)
dc.contributor.authorYi-Chang Liuen
dc.contributor.author劉易昌zh_TW
dc.date.accessioned2021-06-13T15:22:33Z-
dc.date.available2010-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citation參 考 文 獻
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
3. D. R. Radu, C.-Y. Lai, K. J. Eric, W. Rowe, S. Jeftinija, Victor. S.-Y. Lin, J. Am. Chem. Soc. 2004, 126, 13216.
5. J. H. Clark, D. J. Macquarrie, Chem. Commun. 1998, 853
4. C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, Victor S.-Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451.
6. D. J. Macquarrie, J. H. Clark, A. Lambert, A. Priest, J. E. G. Mdoe, Reactive Funct. Polym. 1997, 35, 153.
7. Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
8. S. T. Hyde, Pure Appl. Chem. 1992, 64, 1617.
9. U. Henriksson, E. S. Blackmore, G. J. T. Tiddy, O. Soderman, J. Phys. Chem. 1992, 96, 3894.
10. D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
11. S. Che, H. Li, S. Lim, Y. Sakamoto, O Terasaki, T. Tatsumi, Chem. Mater. 2005, 17, 4103.
12. D. J. Mitchell, G. J. T. Tiddy, L. Waring, T. Bostock, M. P. McDonald, J. Chem. Soc., Faraday Trans. 1 1983, 79, 975.
13. D. Danino, Y. Talmon, R. Zana, J. Colloid Interface Sci. 1997, 186, 170.
14. M. J. Schick, J. Colloid Sci. 1962, 17, 801.
15. A. Ray, G. Nemethy, J. Am. Chem. Soc. 1971, 93, 6787.
16. D. N. Rubingh, P. M. Holland, Cationic surfactant: Physical Chemistry; Surfactant Science Series 37; Marcel Dekker: New York, 1991.
17. S. L. Burkett, S. D. Sims, S. Mann, Chem. Commun. 1996, 1367.
18. C. E. Fowler, S. L. Burkett, S. Mann, Chem. Commun. 1997, 1769.
19. M. H. Lim, C. F. Blanford, A. Stein, J. Am. Chem. Soc. 1997, 119, 4090.
20. R. Richer, L. Mercier, Chem. Commun. 1998, 1775.
21. C. E. Fowler, B. Lebeau, S. Mann., Chem. Commun. 1998, 1825.
22. S. R. Hall, C. E. Fowler, B. Lebeau, S. Mann, Chem. Commun. 1999, 201.
23. F. Babonneau, L. Leite, S. P. Fontlupt, J. Mater. Chem. 1999, 9, 175.
24. K. Moller, T. Bein, R. X. Fischer, Chem. Mater. 1999, 11, 665.
25. B. J. Melde, B. T. Holland, C. F. Blanford, A. Stein, Chem. Mater. 1999, 11, 3302.
26. T. Asefa, M. J. MacLachlan, N. Coomb, G. A. Ozin, Nature 1999, 402, 867.
27. L. Mercier, T. J. Pinnavaia, Chem. Mater. 2000, 12, 188.
28. D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, Chem. Mater. 2000, 12, 2448.
29. G. Cerveau, R. J. Corriu, B. Dabiens, J. L. Bideau, Angew. Chem. Int. Ed. 2000, 39, 4533.
30. S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 2002, 416, 304.
31. M. C. Burleigh, M. A. Markowitz, M. S. Spector, B. P. Gaber, Chem. Mater. 2001, 13, 4760.
32. J. A. Melero, G. D. Stucky, R. V. Griekena, G. Morales, J. Mater. Chem. 2002, 12, 1664.
33. A. Doyle , B. K. Hodnett, Micropor. Mesopor. Mater. 2003, 58, 255.
34. B. Lebeau, C. Marichal, A. Mirjol, G. A. S. Illia, R. Buestrich, M. Popall, L. Mazerollesd, C. Sanchez, New J. Chem. 2003, 27, 166.
35. S. Huh, J. W. Wiench, J.-C. Yoo, M. Pruski, V. S.-Y. Lin, Chem. Mater. 2003, 15, 4247.
36. Y. Q. Wang, C. M. Yang, B. Zibrowius, B. Spliethoff, M. Linde′n, F. Schüth, Chem. Mater. 2003, 15, 5029.
37. Y. Wang, B. Zibrowius, C.-M. Yang, B. Spliethoff, F. Schüth, Chem. Commun. 2004, 46.
38. Y. Wang, B. Zibrowius, C.-M. Yang, B. S. F. Schüth, Chem. Comun. 2004, 4, 6.
39. X. Wang, C.-C. Chen, S.-Y. Chen, Y. Mou, S. Cheng, Applied Catalysis A: General 2005, 281, 47.
40. C.-M. Yang, Y. Wang, B. Zibrowius, F. Schüth, Phys. Chem. Chem. Phys. 2004 ,6 , 2461.
41. W. H. Zhang, X. B. Lu, J.-H. Xiu, Z. L. Hua, L.-X. Zhang, M. Robertson, J. L. Shi, D. S. Yan, J. D. Holmes, Adv. Funct. Mater. 2004, 14, 544.
42. J. L. Blin, C. Ge′rardin, L. Rodehüser, C. Selve, M. J. Ste′be′ Chem. Mater. 2004, 16, 5071.
43. K. Landskron, G. A. Ozin, Science 2004, 306, 1529.
44. M. Alvaro, C. Aprile, A. Corma, V. Fornes, H. Garcı’a, Tetrahedron 2004, 60, 8257.
45. M. Alvaro, C. Aprile, M. Benitez, J. L. Bourdelande, H. Garcia, J. R. Herance, Chem. Phys. Lett. 2005, 414, 66.
46. R. Hernandez, A.-C. Franville, P. Minoofar, B. Dunn, J. I. Zink, J. Am. Chem. Soc. 2001, 123, 1248.
47. X. Wang, Y.-H. Tseng, J. C. C. Chan, S. Cheng, Micropor. Mesopor. Mater. 2005, 85 , 241.
48. D. R. Radu, C.-Y. Lai, J. Huang, X. Shu, V. S. Y. Lin, Chem. Commun. 2005, 1264.
49. D. M. Jiang, Q. Yang, J. Yang, L. Zhang, G. Zhu, W. G. Su, C. Li, Chem. Mater. 2005, 17, 6154.
50. C. Y. Peng H. G. Zhang, Q. G. Meng , H. R. Li, J. G. Yu, J. F. Guo, L. N. Sun, Inorg. Chem. Commun. 2005, 8, 440.
51. C. Peng, H. Zhang, J. Yu, Q. Meng, L. Fu, H. Li, L. Sun, X. Guo, J. Phys. Chem. B 2005, 109, 15278.
52. J. P. Badyal, A. M. Cameron, N. R. Cameron, D. M. Coe, R. Cox, B. G. Davis, L. J. Oates, G. Oye, P. G. Steel, Tetrahedron Lett. 2001, 42, 8531.
53. D. Magda, M. Wright, R. A. Miller, J. L. Sessler, P. I. Sansom, J. Am. Chem. Soc. 1995, 117, 3629.
54. J. Huang, T. Wu, S. Wu, H. Wang, L. Xing, K. Song, H. Xu, Y. Jiang, Q. Kan, Mater. Chem. Phys. 2005, 94, 173.
55. M. Clerc, A. M. Levelut, J. F. Sadoc, J. Phys. II 1991, 1, 1263.
56. V. Luzzati, J. Phys. II 1995, 5, 1649.
57. S. Polarz, A. Kuschel, Adv. Mater. 2006, 18, 1206.
58. J. Alauzun, A. Mehdi, C. Reye′, R. J. P. Corriu, Chem. Commun., 2006, 347.
59. R. M. Grudzien, B. E. Grabicka, D. J. Knobloch , M. Jaroniec, Colloids and Surfaces A: Physicochem. Eng. Aspects 2006, 291, 139.
60. B. Gadenne, P. Hesemann, V. Polshettiwar, J. J. E. Moreau, Eur. J. Inorg. Chem. 2006, 3697.
61. Z. Yan, G. Li, L. Muab, S. Tao, J. Mater. Chem. 2006, 16, 1717.
62. H. Li, F. Zhang, Y. Wan, Y. Lu, J. Phys. Chem. B 2006, 110, 22942.
63. G. Zhu, D. Jiang, Q. Yang , J. Yang, C. Li, J. Chromatogr. A 2007, 1149, 219.
64. J. Goworek1, W. Stefaniak1, A. Kierys, M. Iwan, J. Therm. Anal. Cal. 2007, 87, 217.
65. S. F. Shoresh, S. Marx, D. Avnir, Adv. Mater. 2007, 19, 2145.
66. L. Han, J. Ruan, Y. Li, O. Terasaki, S. Che, Chem. Mater. 2007, 19, 2860.
67. J. Alauzun, A. Mehdi, R. Mouawia, C. Reye′, R. J. P. Corriu, J Sol-Gel Sci Technol. 2008, 46, 383.
68. D. Coutinho, C. Xiong, K. J. Balkus Jr., Micropor. Mesopor. Mater. 2008, 108, 86.
69. J. T. A. Jones, C. D. Wood, C. Dickinson, Y. Z. Khimyak, Chem. Mater. 2008, 20, 3385.
70. R. Me′tivier, I. Leray, B. Lebeau, B. Valeur, J. Mater. Chem. 2005, 15, 2965.
71. T. Balaji, M. Sasidharan, H. Matsunaga, Analyst 2005, 130, 1162.
72. E. Coronado, J. R. G. Mascaro′s, C. M. Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, M. K. Nazeeruddin, J. Am. Chem. Soc. 2005, 127, 12351.
73. M. H. Lee, S. J. Lee, J. H. Jung, H. L. J. S. Kim, Tetrahedron 2007, 63, 12087.
74. S. J. Lee, J. E. Lee, J. Seo, I. Y. Jeong, S. S. Lee, J. H. Jung, Adv. Funct. Mater. 2007, 17, 3441.
75. T. Balaji, S. A. El-Safty, Angew. Chem. Int. Ed. 2006, 45, 7202.
76. S. A. El-Safty, D. Prabhakaran, A. A. Ismail, H. Matsunaga, F. Mizukami, Chem. Mater. 2008, 20, 2644
77. M. Arduini, F. Mancin, P. Tecilla, U. Tonellato, Langmuir 2007, 23, 8632.
78. T. Balaji , M. Sasidharan, H. Matsunaga, Anal. Bioanal. Chem. 2006, 384, 488.
79. S. A. El-Safty, D. Prabhakaran, A. A. Ismail, H. Matsunaga, F. Mizukami, Adv. Funct. Mater. 2007, 17, 3731.
80. E. Brasola, F. Mancin, E. Rampazzo, P. Tecill, U. Tonellato, Chem. Commun. 2003, 3026.
81. E. Rampazzo, E. Brasola, S. Marcuz, F. Mancin, P. Tecilla, U. Tonellato, J. Mater. Chem. 2005, 15, 2687.
82. R. Zimmerman, L. B. Desmonts, F. Baan, D. N. Reinhoudt, M. C. Calama, J. Mater. Chem. 2005, 15, 2772.
83. H. Zhang, P. Zhang, K. Ye, Y. Sun, S. Jiang,Y. Wang, W. Pang, J. Lumines. 2006, 117, 68.
84. S. J. Lee, S. S. Lee, J. Y. Lee, J. H. Jung, Chem. Mater. 2006, 18, 4713.
85. F. Lu, L. Gao, L. Ding, L. Jiang, Y. Fang, Langmuir 2006, 22, 841.
86. S. J. Lee, S. S. Lee, M. S. Lah, J. M. Hong, J. H. Jung, Chem. Commun. 2006, 4539.
87. B. I. Ipe, K. Yoosaf, K. G. Thomas, J. Am. Chem. Soc. 2006, 128, 1907.
88. 70. L. L. Li, H. Sun, C. J. Fang, J. Xu, J.Y. Jin, C. H. Yan, J. Mater. Chem. 2007, 17, 4492.
89. L. Gao, J. Q. Wang, L. Huang, X. X. Fan, J. H. Zhu, Y. Wang, Z. G. Zou, Inorg. Chem. 2007, 46, 10287.
90. S. J. Lee, D. R. Bae, W. S. Han, S. S. Lee, J. H. Jung, Eur. J. Inorg. Chem. 2008, 1559.
91. L. Nicole, C. Boissie`re, D. Grosso, P. Hesemann, J. Moreaub, C. Sanchez, Chem. Commun. 2004, 2312.
92. L. Gao, Y. Wang, J. Wang, L. Huang, L. Shi, X. Fan, Z. Zou, T. Yu, M. Zhu, Z. Li, Inorg. Chem. 2006, 45, 6844.
93. S. Nath, U. Maitra, Org. Lett. 2006, 8, 3239.
94. P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, U. Tonellato, Chem. Eur. J. 2007, 13, 2238.
95. V. S. Y. Lin, C.-Y. Lai, J. Huang, S.-A. Song, S. Xu, J. Am. Chem. Soc. 2001, 123, 11510.
96. 詹益慈 國立台灣大學碩士論文 2002年
97. Y. T. Chan, H. P. Lin, C. Y. Mou, S. T. Liu, Chem. Commun. 2002, 2878.
98. 柯又升 國立台灣大學碩士論文 2005年.
99. J. Brown, L. Mercier, T. J. Pinnavaia, Chem. Commun. 1999, 69.
100. E. Schael, H. G. Ltihmannsrben, Chem. Phys. 1996, 206, 193.
101. P. J. Frank, D. E. Rabinowitsch, Trans. Faraday Soc., 1934, 120.
102. J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry 4th. Harper Collins College Publishers.
103. G. C. Ian, M. R. Southcott, J. Chem. Soc. Perkin Trans. 1990, 767.
104. R. H. Mizzoni, M. A. Hennessey, J. Am. Chem. Soc. 1954, 76, 2414.
105. S. S. Simons, Jr., D. F. Johnson, J. Org. Chem., 1978, 43, 2886
106. C. Yu, Y. Yu, D.Y. Zhao, Chem. Commun. 2000, 7, 575
107. P. Alexandridis, U. Olsson, B. Lindman, Langmuir 1997, 13, 23.
108. B. Marler, U. Oberhagemann, S. Vortmann, H. Gies, Microporous Mater. 1996, 6, 375.
109. M. Kruk, M. Jaroniec, Chem. Mater. 2001, 13, 3169.
110. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. D. Stucky, H. J. Shim, R. Ryoo, Nature 2000, 408, 449.
111. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
112. M. P. Kapoor, Q. Yang, S. Inagaki, J. Am Chem. Soc. 2002, 124, 15176.
113. J. D. Lindberg, L. S. Laude, Appl. opt. 1974, 13, 1923.
114. W. Liu , D. Chen, H. Miyoshi, K. Kadono , T. Akai, J. non-cryst. Solid. 2006, 352, 2969.
115. C. T. Dameron, D. R. Winge, G. N. George, M. Sansone, S. Hu, D. Hamer, Proc. Natl. Acad. Sci. U. S. A, 1991, 88, 6127.
116. H. Shi, X. Fu, X. Zhou, Z. Hu, J. Mater. Chem., 2006, 16, 2097.
117. J. S. Cavet, A. I. Graham, W. Meng, N. J. Robinson, J. Biol. Chem. 2003, 267, 44560.
118. G. R. Dieckmann, D. K. McRorie, D. L. Tierney, L. M. Utschig, C. P. Singer, T. V. O’Halloran, J. E. Penner-Hahn, W. F. DeGrado, V. L. Pecoraro, J. Am. Chem. Soc. 1997, 119, 6195.
119. H. Fleischer, D. Schollmeyer, Inorg. Chem. 2004, 43, 5529.
120. B. Bag, P. Bharadwaj, Inorg. Chem. 2004, 43, 4626.
121. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 1983, New York and London.
122. B. Valeur, I. Leray, Coord. Chem. Rev. 2000, 205, 3.
123. R. Bergonzi, L. Fabbrizzi, M. Licchelli, C. Mangano, Coord. Chem. Rev. 1998, 170, 31.
124. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis 5th. Saunders College Publishing.
125. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis 5th. Saunders College Publishing.
126. R. K. Iler, The Chemistry of silica, 1979, A Wiley-Interscience publication.
127. S. Patai, The Chemistry of the Thio Group, 1974, John wiley & Son.
128. D. A. P. Tanaka, M. S. C. Alvarado, M. A. L. Tanco, Y. Takahashi, A. Chatterjee, H. Suzuki, T. M. Suzuki, Anal. Sci. 2005, 21, 417
129. T. Liu, W. G. Han, F. Himo, G. M. Ullmann, D. Bashford, A.Toutchkine, K. M. Hahn, L. Noodleman J. Phys. Chem. A 2004, 108, 3545.
130. N. C. Lim, H. C. Freake, C. Brückner, Chem. Eur. J. 2005, 11, 38.
131. M. Iwasaki, J. Kuraki, S. Ito, J. Sol-Gel Sci. Technol. 1998, 13, 587.
132. E. M. Nolan, J. Jaworski, M. E. Racine, M. Sheng, S. J. Lippard, Inorg. Chem. 2006, 24, 9748.
133. A. E. Martell, R. M. Smith, Critical Stability Constants, Plenum Press, New York, 1975, v2.
134. A. E. Martell, R. M. Smith, Critical Stability Constants, Plenum Press, New York, 1974, v1.
135. G. Anderegg and V. Gramlich, Helv. Chem. Acta 1994, 685.
136. A. E. Martell, R. M. Smith, Critical Stability Constants, Plenum Press, New York, 1982, v5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37252-
dc.description.abstract論文摘要
本篇論文是以polyethyleneglycol methyl ether為起始物來合成醯胺連結的巨起始劑,再利用原子轉移方式自由基聚合(atom transfer radical polymerization, ATRP)合成出疏水端為methyl acrylate的兩性雙區塊共聚高分子EO45MA40、EO45MA53以及EO45MA63。
利用所合成的雙區塊聚合物在酸性水溶液下,TEOS為矽的來源,進行孔洞性材料的合成,其孔徑(pore size)隨疏水端的增長而增大,所得結構皆為立方體(Im m)。以七種有機矽烷分別與TEOS進行共縮合反應,會得到介尺度結構(mesostructure)改變的孔洞性材料,例如具有六角柱狀結構的M45-40CPTMS(10%)-E、M45-40MPTMS(10%)-E、M45-40PTMS(10%)-E、M45-40VTCS(20%)-E、M45-53MPTMS(5 %)-E、M45-53 PTMS(5 %)-E、M45-53VTCS(5 %)-E、M45-53MPTMS(10 %)-E和M45-53VTMS(10 %)-E以及一些具有立方體與六角柱狀混合結構或非結晶性結構的材料。這些有機矽烷分別為cyclopenadienylpropyltriethoxysilane (CPDEPTES)、3-chloropropyltrimethoxy- silane(CPTMS)、3-mercaptopropyltrimethoxysilane (MPTMS)、octyltriethoxysilane (OTES)、phenyltrimethoxysilane(PTMS)、vinyltrichlorosilane (VTCS)、vinyl- trimethoxysilane (VTMS)。
利用M45-53MPTMS(10%)-E架接MPTMS形成M45-53MPTMS(10%)-g-MPTMS,並以此為起始物合成含硫取代基isoindole的材料M1,作為金屬離子偵測器。對14種離子作吸附反應的結果之中,IA、IIA離子樣品使得螢光增強,3d、4d、5d金屬離子樣品則會淬熄螢光,其中以CuCl2和Pb(ClO4)2的樣品淬熄效果最好。
M1在pH值 > 6.95之下螢光迅速增強,pH值介於3.06-6.95之間時改變不大,而pH值 < 3.06時則有顯著的淬熄;在pH = 7的緩衝溶液下對離子吸附,IIA離子樣品螢光增強程度減緩,其餘的離子樣品螢光改變不大。在吸附時若加入acetylacetone當共配位基,螢光淬熄的程度有減緩現象。此外具有不同於M1取代基的材料M2,對金屬離子吸附之螢光變化情形則與M1樣品相差不多。有機化合物含硫取代isoindole G對離子的結合,只有CuCl2對G完全淬熄,其餘的樣品幾乎沒有改變。這些現象可用軟硬酸鹼(hard soft acid base)理論解釋:M1上含硫取代isoindole上的硫原子與過渡金屬離子結合力較佳的話,會造成較大程度的螢光淬熄。
由於isoindole為一個溫度敏感的化合物,在室溫下即會氧化,所以改用對溫度穩定的anthracene基團。將anthracene基團連接在含有硫原子的M45-53MPTMS(10%)-E上,形成另一金屬離子偵測器M3,對前述的14種離子進行檢測,其中以Cu2+使M3的螢光萃熄程度最強,並且由於M3對銅離子吸附能力極佳,可應用為清除水中銅離子材料。在M3 系統中,利用中性乙二胺水溶液沖洗可以將銅離子脫附,回覆成原來的M3。經過八次脫附後,anthracene仍保留在M3之中,使得此材料可以重覆吸附脫附使用。
zh_TW
dc.description.abstractAbstract
Utilizing the diblock copolymers (EO45MA40, EO45MA53, and EO45MA63 ) as tmplates, porous materials having cubic Im m structure could be obtained under acidic conditions with TEOS as silicate sources and the pore diameter increased accordingly with the chain length of polyacrylate. However, the meso-structures of silicas changed from cubic to other structures upon the addition of organosilanes with the co-condensation of TEOS. The organosilanes used here include cyclopenadienylpropyl- triethoxysilane (CPDEPTES), 3-chloropropyltrimethoxysilane (CPTMS), 3-mercapto- propyltrimethoxysilane (MPTMS), octyltriethoxysilane (OTES), phenyltrimeth- oxysilane (PTMS), vinyltrichlorosilane (VTCS), vinyltrimethoxysilane (VTMS). The obtained silica with hexagonal structure were from M45-40CPTMS(10%), M45-40MPTMS(10%), M45-40PTMS(10%), M45-40VTCS(20%), M45-53MPTMS(5 %), M45-53 PTMS(5 %), M45-53VTCS(5 %), M45-53MPTMS(10 %) and M45-53VTMS(10 %), whereas other compositions provide mesostructural silica in either a mixed phase of cubic and hexagonal, or amorphous.
In order to increase the content of thiol groups, M45-53MPTMS(10%)-E was further treated with MPTMS to yield M45-53MPTMS(10%)-g-MPTMS. This grafting material was subsequently modified with a isoindole functionality to form material (M1), which was used for the detection of metal ions through the isoindole fluorescent receptor. While enhanced fluorescence was observed upon the addition of IA and IIA metal ions, the transition metal ions (3d, 4d and 5d) caused the quenching. Among all ions, CuCl2 and Pb(ClO4)2 resulted in a dramatic fluorescent quenching.
The fluorescence phenomenon in M1 system depended on the pH of the medium and was strongly enhanced as pH > 6.95 and quenched as < 3.06, respectively, but it showed insignificant change in the pH range of 3.06 ~ 6.95. In a buffer solution of pH = 7, M1 adsorbed with IIA metal ions showed a slightly enhanced fluorescence, but other ions did not show substantial effect. For the substituted isoindole chromophore M2, comparable to M1, proved a similar fluorescent behavior. Completely fluorescent quenching was observed upon the treatment of CuCl2, but no change for other ions. These phenomena described above could be rationalized by HSAB theory, which a stronger interaction between sulfur and transition metal ions resulted in greater fluorescent quenching.
Due to the thermal unstable nature of isoindole, anthracenyl group was introduced for further application. Thus, modification of M45-53MPTMS(10%) with chloromethylanthrance yielded M3. It turned out that M3 could behave a good absorbent to remove Cu2+ ions from water. This material could be re-used for removal of metal ions. Thus, the absorbed Cu2+ was completely washed out by the treatment of an aqueous solution of ethylenediamine under neutral conditions, and the regenerated M3 appeared to remain the same activity even after eight runs.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:22:33Z (GMT). No. of bitstreams: 1
ntu-97-D90223023-1.pdf: 8413804 bytes, checksum: 220cf3bc80e406165749545f7500043d (MD5)
Previous issue date: 2008
en
dc.language.isozh-TW
dc.subject螢光zh_TW
dc.subject中孔洞zh_TW
dc.subject離子偵訊器zh_TW
dc.subject兩性高分子zh_TW
dc.subject介尺度結構zh_TW
dc.subjectfluorescenceen
dc.subjectmesostructureen
dc.subjectmesoporous silicateen
dc.subjectmetal ion sensoren
dc.subjectAmphiphilic Block Copolymersen
dc.subjectorganosilaneen
dc.title以兩性高分子為模板並利用有機矽烷造成介尺度
結構轉變以及應用於金屬離子的偵測
zh_TW
dc.titleMesophase Transition in the Organosilicate Templated by Amphiphilic Block Copolymers and
Their Applications for Metal Ion Sensors
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee牟中原(Chung-Yuan Mou),周必泰(Pi-Tai Chou),劉尚斌(Shang-Bin Liu),林弘萍(Hong-Ping Lin)
dc.subject.keyword介尺度結構,離子偵訊器,兩性高分子,螢光,中孔洞,zh_TW
dc.subject.keywordmesostructure,mesoporous silicate,metal ion sensor,Amphiphilic Block Copolymers,organosilane,fluorescence,en
dc.relation.page213
dc.rights.note有償授權
dc.date.accepted2008-07-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
8.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved