請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成(Chow-Shing Shin) | |
| dc.contributor.author | Shih-Wei Lin | en |
| dc.contributor.author | 林士瑋 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:21:49Z | - |
| dc.date.available | 2009-07-27 | |
| dc.date.copyright | 2008-07-27 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | [1] P.C. Paris, M.P. Gomez, and W.P. Anderson, “A Rational Analytic Theory of Fatigue,” The Trend in Engineering, Vol.13, pp.9-14(1961).
[2] P.C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Vol.85, pp.528-534(1960). [3] 蔡賜慶, “疲勞裂縫填充修補之評估模式探討,” 碩士論文, 台灣大學機械工程研究所(2000). [4] J.W. Dally and W.F. Riley, “Experimental Stress Analysis,” McGraw-Hill , pp.97-100(1991). [5] W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol.2, pp.37-45(1970). [6] W. Elber, “The Significance of Fatigue Crack Growth,” ASTM STP486, American Society for Testing and Material, Philadelphia, pp.230-241(1971). [7] T.L Anderson, “Fracture Mechanics Fandamental and Applications,” CRC Press(1991). [8] R.H. Christensen, “Fatigue Crack, fatigue damage and their direction,” Metal Fatigue, McGraw-Hill(1959). [9] C. Bathias and M. Vancon, “Mechanism of Overload Effect on Fatigue Crack Propagation of two Aluminum alloys,” Engineering Fracture Mechanics, Vol.10, No.2, pp409-424(1978). [10] J. Schijve and D. Broke, “Crack Propagation. The Result of a Test Programme Based on a Gust Spectrum with Variable Amplitude Loading,” Aircrasft Engineering, Vol.34, pp.314-316(1962). [11] J.F. Knott and A.C. Pickard, “Effects of Over loads on Fatigue-Crack Propagation:Aluminum Alloys,” Metal Science, Aug/Sept, pp.399-404(1977). [12] J.R. Rice, ASTM STP 415, American Society for Testing and Material, Philadelphia, pp.247-311(1967). [13] C. Robin, M. Louh, and G. Pluvinage, “Influence of an Overload on the Fatigue Crack Growth in Steels,” Fatigue of Engineering Materials and Structures, Vol.6, No.1, pp.1-13(1983). [14] S. Matsuoka and K. Tanaka, “The Retardation Phenomenon of Fatigue Crack Growth in HT80 Steel, ” Engineering Fracture Mechanics, Vol.8, pp.507-523(1976). [15] S. Suresh, “Micromechanisms of Fatigue Crack Growth Retardation Following Overloads,” Engineering Fracture Mechanics, Vol.18, No.3, pp.577-593(1983) [16] S. Suresh, “Crack Growth Retardation Due to Micro-roughness:A mechanism for Overload Effects in Fatigue,” Scripta Metallurgica, Vol.16, pp.995-999(1982). [17] W. Elber, ”Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol.2, pp.37-45(1970). [18] W. Elber, “The Significance of Fatigue Crack Growth,” ASTM STP 486, American Society for Testing and Material, Philadelphia, pp.230-241(1971). [19] D.L. Davidson, “Plasticity Induced Fatigue Crack Closure,” ASTM STP 486, American Society for Testing and Material, Philadelphia, pp.44-61(1981). [20] W.R. Corwin and G.E. Lucas, “The Use of Small-scale Specimen for Testing Irradiated Material,” ASTM STP888, American Society for Testing and Material, Albuquerque(1983). [21] W.R. Corwin, F.M. Haggag, and W.L. Server, Eds. “Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plate Life Extension,” ASTM STP1204, American Society for Testing and Material, New Orleans(1993). [22] W.R. Corwin, S.T. Rosinski, and E.V. Walle, Eds. “Small Specimen Test Technique,” ASTM STP1229, American Society for Testing and Material, New Orleans(1997). [23] J.F. Kalthoff and M. Gregor, “Instrumented impact testing of subsize Charpy V-notch specimens,” Small Specimen Test Techniques, ASTM STP 1329, American Society for Testing and Material, pp.98-109(1998). [24] D. Sarchamy and M.G, Burns, “Estimation of fracture toughness values for titanium alloy using small centre notched round specimens,” Small Specimen Test Techniques, ASTM STP 1329, American Society for Testing and Material pp.353-362(1998). [25] L.M. Barker, “A simplified method for measuring plane strain fracture toughness,” Engineering fracture Mechanics, Vol.9, pp.161-169(1997). [26] M. Bernard, J.W. Provan, and H.V. Lakshminarayana, “On the development of a fracture toughness test procedure using a notched disk specimen,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.143-161(1993). [27] D.J. Alexander, “Fracture toughness measurements with subsize disk compact specimens,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.130-142(1993). [28] T.S. Yun, J.S. Kim, S.H. Chi, and J.H. Hong, “Effect of specimen thickness on the tensile deformation properties of SA508 C1.3 reactor pressure vessel steel,” Small Specimen Test Techniques, ASTM STP 1329, American Society for Testing and Material, pp.575-587(1998). [29] W.N. Sharpe, Jr, D. Danly, and D.A. La Van, “Microspecimen tensile tests of A533b steel,” Small Specimen Test Techniques, ASTM STP 1329, American Society for Testing and Material, pp.497-512(1998). [30] S. Nunomura, T. Nishijima, Y. Higo, and A. Hishinuma, “Evaluation of tensile properties using a TEM disk-size specimen,” Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP1204, American Society for Testing and Material, pp.256-266(1993). [31] F.M. Haggag, “In-situ measurements of mechanical properties using novel automated ball indentation system,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.27-44(1993). [32] F.M. Haggag, W.L. Server, G.E. Lucas, G.E. Odette, and J.W. Sheckherd, “The use of miniaturized tests to predict flow properties and estimate fracture toughness in deformed steel plates,” J. of Testing and Evaluation, JTEVA, Vol1, No.1, pp.62-69(1990). [33] T. Misawa, T. Adaci, M. Saito, and Y. Hamaguchi, “Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels,” Journal of Nuclear Material, Vol.150, pp.1619-1622(1989). [34] G.R. Rao and B.A. Chin, “Development of a miniature disk bending fatigue specimen,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.267-274(1993). [35] S. Nunomura, S. Noguchi, Y. Okamura, S. Kumai, and S. Jitsukawa, “Two micro fatigue test methods for irradiated materials,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.275-288(1993). [36] F.M. Haggag, R.K. Nanstad, J.T. Hutton, D.L. Thomas, and R.L. Swain, “Use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials,” Applications of automation Technology to Fatigue and Fracture Testing, ASTM STP 1092, American Society for Testing and Material, pp.188-208(1990). [37] H.K. Sriharsha, R.K. Pandey, and S. Chatterjee, “Towards standardising a sub-size specimen for fatigue crack propagation behavior of a nuclear pressure vessel,”Engineering Fracture Mechanics, Vol.64, pp.607-624(1999). [38] 林賢易, “微型疲勞試驗機,” 碩士論文, 台灣大學機械工程研究所(2006). [39] P.E. Irving, J.L. Robinson, and C.J. Beevers, “Fatigue Crack Closure in Titanium and Titanium Alloy,” International Journal of Fracture, Vol.9, pp.105-108(1993). [40] O. Buck, C.L. Ho, and H.L. Marcus, “Plasticity Effects in Crack Propagation,” Engineering Fracture Mechanics, Vol.5, pp.23-34(1973). [41] 紀賀勛, “7075-T651鋁合金不等振幅疲勞破壞探討,” 碩士論文, 台灣大學機械工程研究所(1994). [42] 蔡賜慶, “Model I圓桿表面裂縫生長性質的探討與應用,” 博士論文, 台灣大學機械工程研究所(2004). [43] 黃文翰, “隨機應力下疲勞裂縫延伸研究,” 碩士論文, 台灣大學機械工程研究所(1991). [44] http://teach.tcvs.tcc.edu.tw/ [45] 蕭安富, “隨機負荷下疲勞裂縫閉合及裂縫閉合及裂縫延伸現象之探討,” 碩士論文, 台灣大學機械工程研究所(1993). [46] 陳品成, “縮小尺寸技術於疲勞測試之運用,” 碩士論文, 台灣大學機械工程研究所(1991). [47] N.E. Ashbaugh, W.J. Porter, R.V. Prakash, and R. Sunder, “A Fractographic Study of Load Sequence Induced Mixed-Mode Fatigue Crack Growth in an Al-Cu Alloy,” Mixed-Mode Crack Behavior, ASTM STP 1359, K.J. Miller and D.L. McDowell. Eds., American Society for Testing and Material, pp.258-278(1999). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37224 | - |
| dc.description.abstract | 進行疲勞性質試驗,微型平板試片比標準試片節省材料與製作成本,改採取微型疲勞試驗機來取代大型材料試驗機,更能藉著其高拉伸頻率來縮短疲勞試驗的時間,且機台體積小、結構簡單,維護較方便。本篇研究係針對微型疲勞試驗機進行改良設計以利進行微型平板試片疲勞試驗,並進行2014-T651鋁合金、7075-T651鋁合金、304不鏽鋼與4340合金鋼的微型平板試片等振幅負載疲勞拉伸試驗和7075-T651鋁合金的微型平板試片高峰拉伸應力減速現象試驗,將上述二種不同負載控制模式的試驗結果與標準試片的試驗結果進行比較以證明微型平板試片疲勞試驗的可行性。各組試驗結果經比較之下均具有關聯性,能夠證實微型平板試片疲勞試驗結果的可信度。 | zh_TW |
| dc.description.abstract | Using miniature specimens could save material and cost during fatigue testing. Conventional fatigue test was conducted by MTS (material test system) which would be time and cost consuming. The purpose of this study was to propose a miniature fatigue test system for evaluating the fatigue properties using miniature specimens. The advantages of miniature fatigue test system included high working frequency, small volume, simple structure, and easy to repair. Materials of the miniature specimens used in this study were 2014-T651 aluminum alloy, 7075-T651 aluminum alloy, 304 stainless steel, and 4340 steel alloy. Constant amplitude loading with or without overload fatigue testing have been carried out. The fatigue crack growth properties results of the miniature specimens were compared with that of the standard specimens. The experimental results show that miniature fatigue test system was practicable. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:21:49Z (GMT). No. of bitstreams: 1 ntu-97-R95522501-1.pdf: 3556024 bytes, checksum: ec4d888eab2862ff70c80b4e50b94936 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 本文架構 2 第二章 文獻回顧 3 2.1 前言 3 2.2 疲勞裂縫生長 3 2.2.1 應力強度因子(Stress Intensity Factor) 3 2.2.2 具單邊裂縫平板試片之應力強度因子估算[4] 4 2.2.3 Paris’s Law 4 2.2.4裂縫封閉效應 5 2.2.5 Elber修正式 6 2.2.6 高峰拉伸應力減速現象 7 2.3縮小尺寸試片的技術 7 第三章 研究工具和實驗方法 13 3.1 前言 13 3.2 實驗材料與試片規格 13 3.2.1 材料性質 13 3.2.2 試片規格 14 3.2.3 試片編號 14 3.2.4 本試驗小試片之應力強度因子估算[4] 15 3.3 實驗設備簡介 15 3.3.1 微型疲勞試驗二號機主體 16 3.3.2 儀器 18 3.3.3 控制系統 19 3.4 實驗程序 19 3.4.1 試片準備 19 3.4.2 夾具校正 19 3.4.3 實驗系統 20 3.4.4 影像輸出觀測 20 3.4.5負載控制模式 20 3.4.6 量測裂縫封閉 21 3.4.7 實驗數據分析 23 第四章 微型疲勞試驗機比較 37 4.1 微型疲勞試驗一號機概況[38] 37 4.2微型疲勞試驗二號機前期概況 38 4.3微型疲勞試驗二號機後期概況 39 4.3.1 MTS材料試驗機的回授機制:MTS 406控制器與Servovalve 39 4.3.2 自製轉換電路板 39 4.4 結論 40 第五章 實驗結果與討論 48 5.1 實驗數據處理 48 5.2等振幅負載疲勞拉伸試驗 48 5.2.1 實驗數據分析 48 5.2.2 標準試片與小試片所處應力狀態討論 53 5.2.3 比較與討論 56 5.3 高峰拉伸應力減速現象試驗 57 5.3.1實驗數據分析 57 5.3.2 比較與討論 59 第六章 結論與未來工作 75 6.1 結論 75 6.2未來工作 76 參考文獻 77 附錄A 等振幅負載疲勞拉伸試驗各試片裂縫成長初、中、後期裂縫封閉補償圖形之附圖 81 附錄B 等振幅負載疲勞拉伸試驗各試片U(應力有效強度比)~ΔK(應力強度因子幅)關係圖與U~裂縫長度關係圖之附圖 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高峰拉伸應力減速 | zh_TW |
| dc.subject | 疲勞性質試驗 | zh_TW |
| dc.subject | 微型平板試片 | zh_TW |
| dc.subject | 疲勞裂縫生長 | zh_TW |
| dc.subject | 裂縫封閉效應 | zh_TW |
| dc.subject | miniature specimens | en |
| dc.subject | overload retardation | en |
| dc.subject | crack closure | en |
| dc.subject | fatigue crack growth | en |
| dc.subject | fatigue | en |
| dc.title | 利用微型平板試片探討疲勞性質 | zh_TW |
| dc.title | Evaluation of Fatigue Behavior by Using Miniature Specimens | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文方(Wen-Fang Wu),鄭榮和(Jung-Ho Cheng) | |
| dc.subject.keyword | 疲勞性質試驗,微型平板試片,疲勞裂縫生長,裂縫封閉效應,高峰拉伸應力減速, | zh_TW |
| dc.subject.keyword | fatigue,miniature specimens,fatigue crack growth,crack closure,overload retardation, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
