Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3721
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳昭倫(Chaolun Allen Chen) | |
dc.contributor.author | Kuo-Wei Kao | en |
dc.contributor.author | 高國瑋 | zh_TW |
dc.date.accessioned | 2021-05-13T08:36:12Z | - |
dc.date.available | 2019-08-31 | |
dc.date.available | 2021-05-13T08:36:12Z | - |
dc.date.copyright | 2016-08-31 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | References
1. IPCC. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013. 2. van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Global Change Biol. 2014, 20(1): 103-112. 3. Hoegh-Guldberg, O. Coral reef sustainability through adaptation: glimmer of hope or persistent mirage? Current Opinion in Environmental Sustainability 2014, 7: 127-133. 4. Hoegh-Guldberg, O., et al. Coral reefs under rapid climate change and ocean acidification. Science 2007, 318(5857): 1737-1742. 5. Margulis, L. & Fester, R. Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, 1991. 6. Rowan, R. Review—diversity and eology of zooxanthellae on coral reefs. J. Phycol. 1998, 34(3): 407-417. 7. Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 2002, 243: 1 - 10. 8. Weber, M. X. & Medina, M. The role of microalgal symbionts (Symbiodinium) in holobiont physiology. In: Piganeau G (ed). Advances in Botanical Research. Genomic insights into the biology of algae. Academic Press, 2012. 9. Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. Journal of Marine Biology 2011, 2011: 1-12. 10. Jones, A. & Berkelmans, R. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE 2010, 5(5): e10437. 11. Fitt, W. K., Spero, H. J., Halas, J., White, M. W. & Porter, J. W. Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean 'bleaching event'. Coral Reefs 1993, 12: 57-64. 12. Thornhill, D., Fitt, W. & Schmidt, G. Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 2006, 25(4): 515-519. 13. Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences 2008, 275(1641): 1359-1365. 14. Suggett, D. J. & Smith, D. J. Interpreting the sign of coral bleaching as friend vs. foe. Global Change Biol. 2011, 17(1): 45-55. 15. Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 1990, 8: 155-162. 16. Yonge, C. & Nicholls, A. Studies on the physiology of corals. V. The effect of starvation in light and in darkness on the relationship between corals and zooxanthellae. Gt. Barrier Reef Exped. Sci. Rep 1931, 1: 177-211. 17. Jones, R. J. Coral bleaching, bleaching-induced mortality, and the adaptive significance of the bleaching response. Mar Biol 2008, 154(1): 65-80. 18. Jones, R. J., Hoegh-Guldberg, O., Larkum, A. W. D. & Schreiber, U. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell Environ. 1998, 21(12): 1219-1230. 19. Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proceedings of the National Academy of Sciences 1999, 96(14): 8007-8012. 20. Jones, R. J. & Hoegh-Guldberg, O. Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant, Cell Environ. 2001, 24(1): 89-99. 21. Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 1996, 41(2): 271-283. 22. Wooldridge, S. A. A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Marine and Freshwater Research 2009, 60(6): 483-496. 23. Gates, R. D., Baghdasarian, G. & Muscatine, L. Temperature stress causes host cell detachment in symbiotic Cnidarians: implications for coral bleaching. The Biological Bulletin 1992, 182(3): 324-332. 24. Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nature Climate Change 2013, 3(3): 259-262. 25. Pochon, X. & Gates, R. D. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i. Molecular phylogenetics and evolution 2010, 56(1): 492-497. 26. Coffroth, M. A. & Santos, S. R. Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 2005, 156(1): 19-34. 27. LaJeunesse, T. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a' species' level marker. J. Phycol. 2001, 37: 866 - 880. 28. Baker, A. C. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics 2003, 34(1): 661-689. 29. Correa, A. M. S. & Baker, A. C. Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 2009, 28: 81-93. 30. Blackall, L. L., Wilson, B. & van Oppen, M. J. H. Coral—the world's most diverse symbiotic ecosystem. Mol. Ecol. 2015, 24(21): 5330-5347. 31. LaJeunesse, T. C., et al. Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 2014, 53(4): 305-319. 32. Tonk, L., Bongaerts, P., Sampayo, E. M. & Hoegh-Guldberg, O. SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecol. 2013, 13(1): 1-9. 33. Lien, Y. T., et al. Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities. Coral Reefs 2007, 26(1): 35-44. 34. Chen, C. A., Lam, K. K., Nakano, Y. & Tsai, W. S. A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia: Faviidae) in subtropical non-reefal coral communities. Zool. Stud. 2003, 42(4): 540-550. 35. Toller, W. W., Rowan, R. & Knowlton, N. Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. The Biological Bulletin 2001, 201(3): 360-373. 36. Rowan, R. Thermal adaptation in reef coral symbionts. Nature 2004, 430: 742. 37. Berkelmans, R. & Van Oppen, M. The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope'for coral reefs in an era of climate change. Proc R Soc B 2006, 273: 2305 - 2312. 38. McGinty, E., Pieczonka, J. & Mydlarz, L. Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol 2012, 64(4): 1000-1007. 39. Wang, J. T., Meng, P. J., Chen, Y. Y. & Chen, A. C. Determination of the thermal tolerance of Symbiodinium using the activation energy for inhibiting photosystem II acitivity. Zool. Stud. 2012, 51(2): 137-142. 40. Deschaseaux, E. S. M., et al. Comparative response of DMS and DMSP concentrations in Symbiodinium clades C1 and D1 under thermal stress. J. Exp. Mar. Biol. Ecol. 2014, 459: 181-189. 41. Tchernov, D., et al. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(37): 13531-13535. 42. Iglesias-Prieto, R. & Trench, R. K. Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Marine Ecology Progress Series 1994, 113(1): 163. 43. Iglesias-Prieto, R. & Trench, R. K. Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll-protein complexes to different photon-flux densities. Mar Biol 1997, 130(1): 23-33. 44. Howells, E. J., et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change 2012, 2: 116-120. 45. Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biol. 2015, 21(1): 236-249. 46. Hsu, C. M., et al. Temporal and spatial variations of symbiont communities in catch bowl coral, Isopora palifera (Scleractinia; Acroporidae), at reefs in Kenting National Park, Taiwan. Zool. Stud. 2012, 51(8): 1343-1353 47. Keshavmurthy, S., et al. Symbiont communities and host genetic structure of the brain coral Platygyra verweyi, at the outlet of a nuclear power plant and adjacent areas. Molecular ecology 2012, 21(17): 4393-4407. 48. Keshavmurthy, S., et al. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. Peer J 2014, 2: e327. 49. Hume, B. C. C., et al. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Scientific Reports 2015, 5: 8562. 50. Goulet, T. L. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 2006, 321: 1-7. 51. Silverstein, R., Correa, A. & Baker, A. Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B Biol Sci 2012, 279(1738): 2609 - 2618. 52. Mieog, J. C., Oppen, M. J. H., Cantin, N. E., Stam, W. T. & Olsen, J. L. Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 2007, 26(3): 449-457. 53. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(4): 1463-1468. 54. Lee, M. J., et al. Most low-abundance “background” Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb Ecol 2016: 1-13. 55. Salih, A., Larkum, A., Cox, G., Kuhl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 2000, 408(6814): 850-853. 56. Mason, D. S., Schafer, F., Shick, J. M. & Dunlap, W. C. Ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs) are acquired from their diet by medaka fish (Oryzias latipes) but not by SKH-1 hairless mice. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 1998, 120(4): 587-598. 57. Baird, A. H., Bhagooli, R., Ralph, P. J. & Takahashi, S. Coral bleaching: the role of the host. Trends in ecology & evolution 2009, 24(1): 16-20. 58. Lesser, M. P., Stochaj, W. R., Tapley, D. W. & Shick, J. M. Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 1990, 8(4): 225-232. 59. Buddemeier, R. & Fautin, D. Coral bleaching as an adaptive mechanism - a testable hypothesis. Bioscience 1993, 43(5): 320 - 326. 60. Buddemeier, R. W., Baker, A. C., Fautin, D. G. & Jacobs, R. The adaptive hypothesis of bleaching. In: Rosenberg E, Loya Y (eds). Coral Health and Disease. Springer Science & Business Media, 2004. 61. Lin, K. L., Wang, J. T. & Fang, L. S. Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zool. Stud. 2000, 39(3): 172-178. 62. Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and molecular biology reviews : MMBR 2012, 76(2): 229-261. 63. Fransolet, D., Roberty, S. & Plumier, J.-C. Establishment of endosymbiosis: the case of cnidarians and Symbiodinium. J. Exp. Mar. Biol. Ecol. 2012, 420–421(0): 1-7. 64. Fitt, W. K. & Trench, R. K. Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. Journal of cell science 1983, 64: 195-212. 65. Hohman, T. C., McNeil, P. L. & Muscatine, L. Phagosome-lysosome fusion inhibited by algal symbionts of Hydra viridis. The Journal of Cell Biology 1982, 94(1): 56-63. 66. Muscatine, L. & Pool, R. R. Regulation of numbers of intracellular algae. Proc R Soc Lond B Biol Sci 1979, 204(1155): 131-139. 67. Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 2010, 5(10): e13258. 68. Cunning, R., Silverstein, R. N. & Baker, A. C. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proceedings of the Royal Society of London B: Biological Sciences 2015, 282(1809). 69. Rouzé, H., Lecellier, G., Saulnier, D. & Berteaux‐Lecellier, V. Symbiodinium clades A and D differentially predispose Acropora cytherea to disease and Vibrio spp. colonization. Ecology and Evolution 2016, 6(2): 560-572. 70. LaJeunesse, T. C., Smith, R. T., Finney, J. & Oxenford, H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proceedings of the Royal Society of London B: Biological Sciences 2009, 276(1676): 4139-4148. 71. Howells, E. J., Berkelmans, R., van Oppen, M. J., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 2013, 94(5): 1078-1088. 72. Baker, A., McClanahan, T., Starger, C. & Boonstra, R. Long-term monitoring of algal symbiont communities in corals reveals stability is taxon dependent and driven by site-specific thermal regime. Mar. Ecol. Prog. Ser. 2013, 479: 85-97. 73. Cantin, N. E., van Oppen, M. J. H., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 2009, 28(2): 405-414. 74. Little, A. F., van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 2004, 304(5676): 1492-1494. 75. Mieog, J. C., et al. The roles and interactions of symbiont, host and environment in defining coral fitness. PLos ONE 2009, 4(7): e6364. 76. Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. C. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 2015, 34(1): 155-160. 77. Yuyama, I. & Higuchi, T. Comparing the Effects of Symbiotic Algae Symbiodinium Clades C1 and D on Early Growth Stages of Acropora tenuis. PLoS ONE 2014, 9(6): e98999. 78. Stat, M. & Gates, R. D. Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? Journal of Marine Biology 2011, 2011: 1-9. 79. Thornhill, D., LaJeunesse, T., Kemp, D., Fitt, W. & Schmidt, G. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 2006, 148(4): 711-722. 80. Hughes, T. P., et al. Climate change, human impacts, and the resilience of coral reefs. Science 2003, 301(5635): 929-933. 81. Chiou, W. D., Cheng, L. Z. & Ou, H. C. Relationship between the dispersion of thermal effluent and the tidal current in the waters near the outlet of the third nuclear power plant in southern Taiwan. Journal of Fisheries Society of Taiwan 1993, 20: 207-220. 82. Chou, Y., Lin, T. Y., Chen, C. T. A. & Liu, L. L. Effects of nuclear power plant thermal effluent on marine sessile invertebrate communities in southern Taiwan. J. Mar. Sci. Technol. 2004, 12(5): 448-452. 83. Chen, C. T. A., Wang, B. J., Wang, J. J., Tu, Y. Y. & Chang, W. C. Changes in seawater temperature over the past twenty-two years and the radioisotopes in a coral in Nanwan Bay near The Third Nuclear Power Plant. Acta Oceanogr. Taiwanica 2001, 39(1): 39-52. 84. Fan, K. L. The thermal effluent incident of the Third Nuclear Power Plant in southern Taiwan. Acta Oceanogr. Taiwanica 1988, 20: 107-117. 85. Fan, K. L. The thermal effluent problems of three nuclear power plants in Taiwan. Oceanogr. Ser. 1991, 54: 309-403. 86. Hung, T. C., Huang, C. C. & Shao, K. T. Ecological survey of coastal I water adjacent to Nuclear Power I Plants in Taiwan. Chem. Ecol. 1998, 15(1-3): 129-142. 87. Lee, H. J., Chao, S. Y., Fan, K. L., Wang, Y. H. & Liang, N. K. Tidally induced upwelling in a semi-enclosed basin: Nan Wan Bay. J. Oceanogr. 1997, 53: 467-480. 88. Lee, H. J., Chao, S. Y. & Fan, K. L. Flood-ebb disparity of tidally induced recirculation eddies in a semi-enclosed basin: Nan Wan Bay. Cont. Shelf Res. 1999, 19: 871-890. 89. IPCC. Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al. (eds). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013, pp 1–30. 90. Wellington, G. M., et al. Crisis on coral reefs linked to climate change. Eos, Transactions American Geophysical Union 2001, 82(1): 1-5. 91. Wijsman-Best, M. Biological results of the snellius expedition: XXVII. Faviidae collected by the snellius expedition. II. The genera Favites, Goniastrea, Platygyra, Oulophyllia, Leptoria, Hydnophora and Caulastrea. Zoologische Mededelingen 1976, 50(4): 45-63. 92. Lan, C. H. Host genetic and Symbiodinium composition in brain coral, Platygyra verweyi in Kenting, southern Taiwan. Master thesis, National Taiwan University, 2011. 93. Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos, Transactions American Geophysical Union 2003, 84(15): 137-141. 94. Schoepf, V., Stat, M., Falter, J. L. & McCulloch, M. T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific Reports 2015, 5: 17639. 95. LeGore, S., Marszalek, D. S., Danek, L. J., Tomlinson, M. S. & Hofmann, J. E. Effect of chemically dispersed oil on Aranian Gulf corals: a field experiment. International Oil Spill Conference Proceedings 1989, 1989(1): 375-380. 96. Ferrara, G. B., et al. The assessment of DNA from marine organisms via a modified salting-out protocol. Cell. Mol. Biol. Lett. 2006: 150-160. 97. LaJeunesse, T. C. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 2002, 141: 387-400. 98. Ulstrup, K. E. & Van Oppen, M. J. Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Molecular ecology 2003, 12(12): 3477-3484. 99. Rasmussen, R. Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K-I (eds). Rapid cycle real-time PCR: methods and applications. Springer Berlin Heidelberg: Berlin, Heidelberg, 2001, pp 21-34. 100. Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1, c2 in higher plants, algae, and natural phytoplankton. Biochem. Physiolo. Pflanzen 1975, 167: 191-194. 101. Dove, S., et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Oceanogr. 2006, 51(2): 1149-1158. 102. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. 103. Box, G. E. P. & Cox, D. R. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological) 1964, 26(2): 211-252. 104. LaJeunesse, T. C., et al. Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 2010, 37(5): 785-800. 105. Wilkerson, F. P., Kobayashi, D. & Muscatine, L. Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 1988, 7(1): 29-36. 106. Wilkerson, F. P., Muller, G. & Muscatine, P. L. Temporal patterns of cell division in natural populations of endosymbiotic algae. Limnol. Oceanogr. 1983, 28(5): 1009-1014. 107. Jones, R. J. & Yellowlees, D. Regulation and control of intracellular algae (= zooxanthellae) in hard corals. Philosophical Transactions of the Royal Society B: Biological Sciences 1997, 352(1352): 457-468. 108. Dunn, S. R., Bythell, J. C., Le Tissier, M. D. A., Burnett, W. J. & Thomason, J. C. Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J. Exp. Mar. Biol. Ecol. 2002, 272(1): 29-53. 109. Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 2011, 30(2): 429-440. 110. Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 2014, 344(6186): 895-898. 111. Brown, B. E., Downs, C. A., Dunne, R. P. & Gibb, S. W. Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar. Ecol. Prog. Ser. 2002, 242: 119-129. 112. Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T. & Ogawa, H. Imbalanced coral growth between organic tissue and carbonate skeleton caused by nutrient enrichment. Limnol. Oceanogr. 2007, 52(3): 1139-1146. 113. Ezzat, L., Towle, E., Irisson, J.-O., Langdon, C. & Ferrier-Pagès, C. The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limnol. Oceanogr. 2016, 61(1): 89-102. 114. Hughes, A. D. & Grottoli, A. G. Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS ONE 2013, 8(11): e81172. 115. Smith, L. W., Wirshing, H. H., Baker, A. C. & Birkeland, C. Environmental versus genetic influences on growth rates of the corals Pocillopora eydouxi and Porites lobata (Anthozoa: Scleractinia). Pac. Sci. 2008, 62(1): 57-69. 116. Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 2005, 50(2): 125-146. 117. Meng, P. J., et al. A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environ. Pollut. 2008, 156(1): 67-75. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3721 | - |
dc.description.abstract | 由全球氣候變遷造成之海水暖化已然威脅造礁珊瑚的生存。共生藻洗牌為珊瑚宿主對抗熱逆境的數種機制之一,藉由改變體內既有不同抗熱性之共生藻相對豐度,來度過熱逆境所帶來之生存壓力。目前已知有少數幾種珊瑚具有執行共生藻洗牌能力,然而,熱逆境之歷程對於珊瑚執行共生藻洗牌之過程以及洗牌過後珊瑚宿主生存率之影響,至今還不清。本篇實驗採取位於墾丁核三廠出水口、入水口以及萬里桐之維氏腦紋珊瑚片段,於2014年與2015年分次進行野外三個地點間之交互移植實驗。由出水口採取之珊瑚片段,其體內共生藻族群以抗壓性強之D1/D1a型共生藻為主,而其餘兩地採取之珊瑚片段則以對熱敏感之C3/C3cc型共生藻為主。在2014年進行之實驗中,所有由入水口與萬里桐移植至出水口之珊瑚片段皆於七月產生白化現象(熱周度指標=10.43),對比之下由出水口移植至其餘兩地之珊瑚片段則無此現象。所有白化之珊瑚片段中,共有40%完成共生藻洗牌,其體內共生藻族群轉為以D1/D1a型為主,然而在已完成洗牌之珊瑚片段中,有75%在熱逆境消散後死亡。在2015年進行之實驗中,由萬里桐移植至出水口之珊瑚片段共有73%產生白化現象(熱周度指標=5.7),而其中又有73%完成共生藻洗牌,其體內共生藻族群轉為以D1/D1a為主並且全數存活。本篇研究結果證明了在面對氣候變遷影響下,維氏腦紋珊瑚具有進行共生藻洗牌以對抗海水暖化之能力,然而持久熱逆境可能扮演著決定最終共生藻洗牌成功率以及珊瑚宿主最終存活率的關鍵角色。此外,本篇研究亦在野外的條件下證明了體內以D1/D1a型共生藻為主之維氏腦紋珊瑚可有著與體內以C3/C3cc型共生藻為主之維氏腦紋珊瑚相等甚至更高的生長率,此結果暗示著位於出水口之維氏腦紋珊瑚族群可能已在長期熱逆境下藉由調適(acclimatization)或適應(adaptation)或兩者,發展出能更有效率地與D1/D1a型共生藻共生之機制。 | zh_TW |
dc.description.abstract | Rising seawater temperature caused by climate change is threatening the survival of reef-building corals. One of the mechanisms for corals to overcome thermal stress is to shuffle in hospite, the relative dominance of Symbiodinium from thermally susceptible types to tolerant ones. Although the shuffling of Symbiodinium has been observed in a several of coral species, the influence of thermal history on the process of symbiont shuffling and subsequent survival of coral hosts remains unclear. In this study, we conducted in situ reciprocal transplantation experiments (RTE) on nubbins of brain coral, Platygyra verweyi, collecting from a nuclear power plant outlet (NPP-OL), inlet (NPP-IL) and Wanlitung (WLT) of Kenting National Park in 2014 and 2015. While the symbiont community of P. verweyi in NPP-OL was dominated by stress-tolerant types D1/D1a, the ones in NPP-IL and WLT were dominated by the thermal- susceptible types C3/C3cc. In 2014, all the nubbins transplanted from NPP-IL and WLT to NPP-OL bleached in July after the prolonged high seawater temperature (Degree Heating Week, DHW=10.43) in NPP-OL. In contrast, those ones transplanted from NPP-OL to the other two sites remained unbleached. Forty percent of bleached nubbins showed sign of shuffling from C3/C3cc to D1/D1a, although 75% of them died in the subsequent fall. In 2015, 73% of the RTE nubbins from WLT to NPP-OL bleached under less prolonged high seawater temperature (DHW=5.7) with 73% shuffling their symbiont community from C3/C3cc to D1/D1a dominant and surviving after a reduction of the thermal stress. Our results show that in the facing of climate change impact, P. verweyi is capable of shuffling symbiont community towards the stress-tolerant type in order to respond to the rising seawater temperature. However, the degree of prolonged thermal stress may play a crucial key role in determining the success of shuffling and final survival of the coral host. In addition, our study also indicates that the Symbiodinium D1/D1a dominant P. verweyi can have a comparable or higher growth rate than Symbiodinium C3/C3cc dominant one under field condition. This suggests a potential acclimatization and/or adaptation might occur in the P. verweyi population at NPP-OL after long-term association with Symbiodinium D1/D1a. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:12Z (GMT). No. of bitstreams: 1 ntu-105-R02b45016-1.pdf: 2063080 bytes, checksum: 04acac8fd633812f28e6ae2a10745609 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Contents
誌謝 i 中文摘要 ii Abstract iii Contents v Figure Content vii Table Content viii Abbreviations ix Introduction 1 Materials and Methods 7 Study area and coral species 7 Seawater temperature 8 Reciprocal transplant experiment design 9 Reciprocal transplant experiment - 2014 9 Reciprocal transplant experiment - 2015 10 Symbiont community dynamics 10 DNA extraction 10 Denaturing gradient gel electrophoresis (DGGE) 11 Real-time quantitative PCR 12 Physiological parameters 13 Photochemical efficiency 13 General procedure for sample preparation for other parameters 14 Total symbiont density 15 Chlorophyll a concentration 15 Total soluble protein 16 Coral growth 16 Tissue coverage growth 16 Skeleton growth 17 Statistical analysis 17 Results 19 Seawater temperature 19 Reciprocal transplant experiment - 2014 19 Reciprocal transplant experiment - 2015 20 Symbiont community dynamics 20 Denaturing gradient gel electrophoresis (DGGE) 20 Reciprocal transplant experiment - 2014 21 Reciprocal transplant experiment - 2015 22 Physiological parameters 23 Reciprocal transplant experiment - 2014 23 Reciprocal transplant experiment - 2015 25 Coral growth 25 Reciprocal transplant experiment - 2014 25 Reciprocal transplant experiment - 2015 26 Discussion 28 References 42 Appendix 52 Figure Content Figure 1 Diagram of Reciprocal Transplant Experiment (RTE) design and temperature regimes of each study sites. 34 Figure 2 Time series records of in situ weekly mean temperature by sites. 35 Figure 3 Time series of Degree Heating Week (DHW) for each experiment group. 36 Figure 4 Dynamic of symbiont community for each experiment group through time. 37 Figure 5 Physiological parameters of experiment groups located at NPP-OL at each sampling time. 38 Figure 6 Survival rate of TWO and TIO with the different relative dominance of type D1/D1a symbiont under different maximum Degree Heating Week (MDH). 39 Figure 7 Tissue coverage growth and skeleton growth of each experiment group in 2014RTE and 2015RTE. 41 Table Content Table 1 Future predictions of prolonged thermal stress events in Nanwan 40 | |
dc.language.iso | en | |
dc.title | 持久熱逆境決定共生藻洗牌程度與維氏腦紋珊瑚白化後之生存率 | zh_TW |
dc.title | Prolonged thermal stress determines the degree of symbiont shuffling and Platygyra verweyi survival after bleaching | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 戴昌鳳(Chang-Feng Dai),王志騰(Jih-Terng Wang),湯森林(Sen-Lin Tang),單偉彌(Vianney Denis) | |
dc.subject.keyword | 熱周度,共生藻洗牌,生存率,珊瑚生長,維氏腦紋珊瑚, | zh_TW |
dc.subject.keyword | Degree Heating Week,Shuffling,Survival rate,Coral growth,Platygyra verweyi, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU201600435 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
Appears in Collections: | 海洋研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf | 2.01 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.