請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(C. C. Yang) | |
| dc.contributor.author | Meng-Tsan Tsai | en |
| dc.contributor.author | 蔡孟燦 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:21:42Z | - |
| dc.date.available | 2010-07-23 | |
| dc.date.copyright | 2008-07-23 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | [1-1]D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178-1181 (1991).
[1-2] D.C. Adler, y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photonics 1, 709-716 (2007). [1-3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003). [1-4] B. Cense, N. Nassif, T. Chen, M. Pierce, S. -H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, 'Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,' Opt. Express 12, 2435-2447 (2004). [1-5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and application for optical coherence tomography,” Opt. Express 14,3225-3237 (2006). [1-6] R. Huber, D. C. Adler, and J. G. Fujimoto, 'Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,' Opt. Lett. 31, 2975 (2006). [1-7] Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, and Fujimoto JG, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 326–332 (1995). [1-8] Joel S. Schuman, Tamar Pedut-Kloizman, Ellen Hertzmark, Michael R. Hee, Jason R. Wilkins, Jeffery G. Coker, Carmen A. Puliafito, James G. Fujimoto, and Eric A. Swanson, ”Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,“ Ophthalmology 103, 1889-1898 (1996). [1-9] Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, Schuman JS, Swanson EA, and Fujimoto JG, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105, 360-370 (1998). [1-10] Wolfgang Drexler, Uwe Morgner, Ravi K. Ghanta, Franz X. Kärtner, Joel S. Schuman, and James G. Fujimoto, ”Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502-507 (2001). [1-11] J.S. Schuman, C.A. Puliafito, and J.G. Fujimoto. Optical coherence tomography of ocular diseases, 2nd edition. Thorofare, NJ: Slack Inc.; 2004. [1-12] B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J Biomed Opt. 6, 474-479 (2001). [1-13] S. Jiao, W. Yu, G. Stoica, and L.V. Wang, “ Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl Opt. 42, 5191-5197 (2003). [1-14] Srinivas S.M, de Boer J.F., and Park H., “Determination of burn depth by polarization-sensitive optical coherence tomography,” J Biomed Opt. 9, 207-212 (2004). [1-15] G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, and J.G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography,” Am J Gastroenterol. 92, 1800-1804 (1997). [1-16] M.V. Sivak, K. Kobayashi, J.A. Izatt, et al., “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest Endosc. 2000 ;51:474-9. [1-17] A.R. Tumlinson, B. Povazay, L.P. Hariri, et al., “In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope,” J Biomed Opt. 11, 064003 (2006). [1-18] Y. Yang, S. Whiteman, D. Gey van Pittius, Y. He, R.K. Wang, and M.A. Spiteri , “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys Med Biol. 49, 1247-1255 (2004). [1-19] N. Hanna, D. Saltzman, D. Mukai, et al., “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J Thorac Cardiovasc Surg. 129, 615-622 (2005). [1-20] M. Tsuboi, A. Hayashi, N. Ikeda, et al., “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 56, 387-394 (2005). [1-21] S.C. Whiteman, Y. Yang, D. Gey van Pittius, M. Stephens, J. Parmer, and M.A. Spiteri, “Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes,” Clin Cancer Res. 12, 813-818 (2006). [1-22] M.E. Brezinski, G.J. Tearney, N.J. Weissman, et al, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397 – 403 (1997). [1-23] J.G. Fujimoto, S.A. Boppart, G.J. Tearney, B.E. Bouma, C. Pitris, and M.E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128 – 133 (1999). [1-24] H. Kitabata, T. Kubo, and T. Akasaka, “Identification of multiple plaque ruptures by optical coherence tomography in a patient with acute myocardial infarction: a three-vessel study,” Heart 94, 544 (2008). [1-25] B. Wong, R. Jackson, S. Guo S, et al., “In Vivo Optical Coherence Tomography of the Human Larynx: Normative and Benign Pathology in 82 Patients,” The Laryngoscope 115:1904-1911 (2005). [1-26] Y. Pan, J. Welzel, R. Birngruber, and R. Engelhardt, “Optical coherence-gate imaging of biological tissues.” IEEE Selelcted Topics Quantum Electron, 2, 1029-1034 (1996). [1-27] C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: A new technique.” Opt. Lett. 22, 665-667 (1997). [1-28] G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, 'Rapid acquisition of in vivo biological images by use of optical coherence tomography,' Opt. Lett. 21, 1408-1410 (1996). [1-29] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117, 43-48 (1995). [1-30] S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598-3604 (2003). [1-31] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, 'Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,' Opt. Express 12, 2404-2422 (2004). [1-32] B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G.Tearney, and J. de Boer, 'Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,' Opt. Express 12, 2435-2447(2004). [1-33] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma,“High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003). [1-34] R. Huber, D. C. Adler, and J. G. Fujimoto, 'Buffered Fourier domain modelocking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,' Opt. Lett. 31, 2975-2977 (2006). [1-35] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003). [1-36] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, 'Performance of Fourier domain vs. time domain optical coherence tomography,' Opt. Express 11, 889-894(2003). [1-37] M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [1-38] J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006). [1-39] Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, 'In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,' Opt. Express 15, 6121-6139 (2007). [1-40] X. J. Wang, T. E. Milner and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337-1339 (1995). [1-41] X. J. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt. 36, 144-149 (1997). [1-42] Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64-67 (1997). [1-43] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1-3 (1997). [1-44] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119-1121 (1997). [1-45] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439-1441 (1997). [1-46] S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448-1450 (2000). [1-47] K. Schoenenberger, B. W. Colston, Jr., D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt. 37, 6026-6036 (1998). [1-48] B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610-1612 (2002). [1-49] M. G. Ducros, J. D. Marsack, H. G. Rylander III, S. L. Thomsen, and T. E. Milner, “Primate retina imaging with polarization-sensitive optical coherencetomography,” J. Opt. Soc. Am. B 18, 2945-2956 (2001). [1-50] S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101-103 (2002). [1-51] C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780-790 (2001). [1-52] S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42, 5191-5197 (2003). [1-53] M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992). [2-1] N. K. Wood and P. W. Goaz, “Differential Diagnosis of Oral and Maxillofacial lesions,” Fifth Edition, Mosby-Year Book, Inc. (1997) [2-2] A. R. Ten Gate, “Oral Histology: Development, structure, and Function,” Fifth Edition, Mosby-Year Book, Inc. (1998). [2-3] D. M. Parkin, F. Bray, J. Ferlay, P. Pisani. Global cancerstatistics, 2002. CA Cancer J Clin 55, 74–108 (2005). [2-4] A. Jemal, T. Murray, E. Ward, et al. Cancer statistics, 2005. CA Cancer J Clin. 55, 10–30 (2005). [2-5] M. Lingen, E. M. Sturgis, M. S. Kies, “Squamous cell carcinoma of the head and neck in nonsmokers: Clinical and biologic characteristics and implications for management,” Curr Opin Oncol 13, 176–182 (2001). [2-6] Cancer Registry Annual Report in Taiwan Area, 2006. Department of Health, The Executive Yuan, Taiwan, (2008). [2-7] Y. K. Chen, H. C. Huang, L. M. Lin, C. C. Lin, ”Primary oral squamous cell carcinoma: An analysis of 703 cases in southern Taiwan,” Oral Oncol. 35, 173–179 (1999). [2-8] B. W. Neville, D. D. Damm, C. M. Allen, J. E. Bouquot. Epithelial pathology. In: Neville BW, Damm DD, Allen CM, Bouquot JE, editors. Oral Maxillofacial Pathology. 2nd edn. Philadelphia: W.B. Sauders 315-387 (2002). [2-9] S. Karrer, R. Szeimies, U. Hohenleutner, M. Landthaler, “Role of lasers and photodynamic therapy in the treatment of cutaneous malignancy,” Am J Clin Dermatol. 2, 229-237 (2001). [2-10] Kubler A., Haase T, Rheinwald M, Barth T, Muhling J. Treatment of oral leukoplakia by topical application of 5-aminolevulinic acid. Int J Oral Maxillofac Surg 1998;27:466-9. [2-11] A. Sieron, M. Adamek, A. Kawczyk-Krupka, S. Mazur, L. Ilewicz, “Photodynamic therapy (PDT) using topically applied [2-12] H. M. Chen, C. H. Yu, T. Tsai, Y. Hsu, R. Kuo, C. P. Chiang, “Topical 5-aminolevulinic acid-mediated photodynamic therapy for oral verrucous hyperplasia, oral leukoplakia and oral erythroleukoplakia,” Photodiagnosis and photodynamic therapy 4, 44-52 (2007). [2-13] D. E. Dolmans, D. F. Fukumura, R. K. Jain, Photodynamic therapy for cancer,” Nat Rev Cancer 3, 380-387 (2003). [3-1] P. Wilder-Smith, W. Jung, M. Brenner, K. Osann, H. Beydoun, D. Messadi, and Z. Chen, 'In Vivo Optical Coherence Tomography for the Diagnosis of Oral Malignancy,' Laser in Surgery and Medicine 35, 269-275 (2004). [3-2] E. Matheny, N. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, 'Optical coherence tomography of malignancy in hamster cheek punches, ' Journal of Biomedical Optics 9, 978-981 (2004). [3-3] P. Wilder-Smith, T. Krasieva, W. Jung, J. Zhang, Z. Chen, K. Osann and B. Tromberg, 'Noninvasive imaging of oral premalignancy and malignancy', Journal of Biomedical Optics,10, 051601-8 (2005) [3-4] W. Jung, J. Zhang, J. Chung, P. Wilder-Smith, M. Brenner, J. S. Nelson, and Z. Chen, 'Advances in Oral Cancer Detection using Optical Coherence Tomography,' IEEE J. Select. Topics Quantum Electron. 11, 811-7 (2005). [3-5] T. M. Muanza, A. P. Cotrim, M. McAuliffe, A. L. Sowers, B. J. Baum, J. A. Cook, F. Feldchtein, P. Amazeen, C. N. Coleman, J. B. Mitchell, 'Evaluation of radiation-induced oral mucositis by optical coherence tomography,' Clin Cancer Res. 5121-7 (2005). [3-6] N. Hanna, W. Waite, K. Taylor, W.- G. Jung, D. Mukai, E. Matheny, K. Kreuter, P. Wilder-Smith, M. Brenner, and Z. Chen, 'Feasibility of Three-Dimensional Optical Coherence Tomography and Optical Doppler Tomography of Malignancy in Hamster Cheek Pouches,' Photomedicine and Laser Surgery 402–409 (2006). [3-7] P. Wilder-Smith, M. J. Hammer-Wilson, J. Zhang, Q. Wang, K. Osann, Zhongping Chen, H. Wigdor, J. Schwartz and J. Epstein, 'In vivo Imaging of Oral Mucositis in an Animal Model Using Optical Coherence Tomography and Optical Doppler Tomography,' Clin Cancer Res 2449-2454 (2007). [3-8] J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith and Zhongping Chen, 'Use of polar decomposition for the diagnosis of oral precancer,' APPLIED OPTICS 3038-3045(2007) [3-9] Kawakami-Wong H, Gu S, Hammer-Wilson MJ, Epstein JB, Chen Z, Wilder-Smith P. 'In vivo optical coherence tomography-based scoring of oral mucositis in human subjects: a pilot study,' J Biomed Opt. 12(5): 051702 (2007). [3-10 ] J. M. Ridgway, W. B. Armstrong, S. Guo, U. Mahmood, J. Su, R. P. Jackson, T. Shibuya, R. L. Crumley, M. Gu, Zhongping Chen, and B. J.-F. Wang, “In Vivo Optical Coherence Tomography of the Human Oral Cavity and Oropharynx,” Arch Otolaryngol Head Neck Surg. 132, 1074 (2006). [3-11] Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimension and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express 13, 10652. (2005). [3-12] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, 'Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,' Opt. Express 12, 2404 (2004). [4-1] B. W. Colston, Jr., M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl Opt. 37, 3582-3585 (1998). [4-2] B. W. Colston, Jr., M. J. Everett, U. S. Sathyam, L. B. DaSilva, and L. L. Otis, “Imaging of the oral cavity using optical coherence tomography,” Monogr Oral Sci. 17, 32-55. Review (2000). [4-3] L. L. Otis, M. J. Everett, U. S. Sathyam, B. W. Colston, Jr., “Optical coherence tomography: a new imaging technology for dentistry,” J Am Dent Assoc. 131, 511-514 (2000). [4-4] E. Matheny, N. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical coherence tomography of malignancy in hamster cheek pouches,” J Biomed Opt. 9, 978-981 (2004). [4-5] P. Wilder-Smith, W. G. Jung, M. Brenner, K. Osann, H. Beydoun, D. Messadi, and Z. Chen, “In vivo optical coherence tomography for the diagnosis of oral malignancy,” Lasers Surg Med. 35, 269-275 (2004). [4-6] A.L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A.K. El-Naggar, R. Richards-Kortum, “Detection and diagnosis of oral neoplasia with an optical coherence microscope,” J Biomed Opt. 9, 1271-1280 (2004). [4-7] W. Jung, J. Zhang, J. Chung, P. Wilder-Smith, M. Brenner, J. S. Nelson, and Z. Chen, 'Advances in Oral Cancer Detection using Optical Coherence Tomography,' IEEE J. Select. Topics Quantum Electron. 11, 811-817 (2005). [4-8] N. M. Hanna, W. Waite, K. Taylor, W. G. Jung, D. Mukai, E. Matheny, K. Kreuter, P. Wilder-Smith, M. Brenner, and Z. Chen, “Feasibility of three-dimensional optical coherence tomography and optical Doppler tomography of malignancy in hamster cheek pouches,” Photomed Laser Surg. 24, 402-409 (2006). [4-9] J. M. Ridgway, W. B. Armstrong, S. Guo, U. Mahmood, J. Su, R. P. Jackson, T. Shibuya, R. L. Crumley, M. Gu, Z. Chen, and B. J. Wong, “In vivo optical coherence tomography of the human oral cavity and oropharynx,” Arch Otolaryngol Head Neck Surg. 132, 1074-1081 (2006). [4-10] B. Wong, R. Jackson, S. Guo, J. Ridgway, U. Mahmood, J. Shu, T. Shibuya, R. Crumley, M. Gu, W. Armstrong, and Z. Chen, ' In Vivo Optical Coherence Tomography of the Human Larynx: Normative and Benign Pathology in 82 Patients,' The Laryngoscope 115,1904-1911 (2005). [4-11] W. Armstrong, J. Ridgway, D. Vokes, S. Guo, J. Perez, R. Jackson, M. Gu, J. Su, R. Crumley, T. Shibuya, U. Mahmood, Z. Chen, and B. Wong, 'Optical Coherence Tomography of Laryngeal Cancer,' The Laryngoscope 116, 1107-1113 (2006). [4-12] T. M. Muanza, A. P. Cotrim, M. McAuliffe, A. L. Sowers, B. J. Baum, J. A. Cook, F. Feldchtein, P. Amazeen, C. N. Coleman, and J. B. Mitchell, “Evaluation of adiation-induced oral mucositis by optical coherence tomography,” Clin Cancer Res. 11, 5121-5127 (2005). [4-13] P. Wilder-Smith, M. J. Hammer-Wilson, J. Zhang, Q. Wang, K. Osann, Z. Chen, H. Wigdor, J. Schwartz, and J. Epstein “In vivo imaging of oral mucositis in an animal model using optical coherence tomography and optical Doppler tomography,” Clin Cancer Res. 13, 2449-2454 (2007). [5-1] S. Karrer, R. Szeimies, U. Hohenleutner, and M. Landthaler, “Role of lasers and photodynamic therapy in the treatment of cutaneous malignancy,” Am J Clin Dermatol 2, 229-237 (2001). [5-2] A. Kubler, T. Haase, M. Rheinwald, T. Barth, and J. Muhling, “Treatment of oral leukoplakia by topical application of 5-aminolevulinic acid,” Int J Oral Maxillofac Surg 27, 466-469 (1998). [5-3] A. Sieron, M. Adamek, A. Kawczyk-Krupka S. Mazur, and L. Ilewicz,“Photodynamic therapy (PDT) using topically applied δ-aminolevulinic acid (ALA) for the treatment of oral leukoplakia,” J Oral Pathol Med 32, 330-336 (2003). [5-4] H.M. Chen, C.H. Yu, T. Tsai, Y. Hsu, R. Kuo, and C. P. Chiang, “Topical 5-aminolevulinic acid-mediated photodynamic therapy for oral verrucous hyperplasia, oral leukoplakia and oral erythroleukoplakia,” Photodiagnosis and photodynamic therapy 4, 44-52 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37219 | - |
| dc.description.abstract | 口腔癌在台灣男性癌症排名第四,對於一般口腔癌病患,早期診
斷可高達百分之七十五的五年以上存活率。光學同調斷層掃瞄技術可以提供縱切面的組織造影,並具有高解析、高造影速度以及較深的造影深度(2~3 mm)等優點,因此光學同調斷層掃瞄技術適合作為口腔癌早期診斷的工具。在這研究中,我們應用光學同調斷層掃瞄技術於離體以及臨床的口腔癌研究。我們建立了一套掃頻式的光學同調斷層掃瞄系統,首先針對從口腔癌病患身上切除的口腔癌樣本做掃瞄。這套系統具備8 um 的縱向解析度以及靈敏度可達108 dB,透過這套系統掃瞄,可區分出正常以及癌組織。在臨床上,我們將此掃頻式的光學同調斷層掃瞄系統接上一特別設計的掃瞄探頭,在醫院針對口腔癌前病變和口腔癌病患掃瞄,並統計上分析有效的診斷指標。在這部分,我們提出了三種指標,其中包含縱向強度分佈的標準差、由縱向強度分佈的空間頻域頻譜所得到的指數衰減常數(α),以及當上皮層和結締組織間的介面仍存在時,所得到的上皮層厚度。另外,我們分析在統一標準和個別相對標準下,這些診斷指標的靈敏度以及明確度。由結果發現,針對中度上皮變異以及鱗狀細胞癌,標準差以及α值將會是很好的診斷指標。另一方面,上皮層厚度適合用作上皮增生以及中度上皮變異診斷上的指標。另外,我們也利用此可攜式的掃頻式光學同調斷層掃瞄系統來追蹤評估口腔癌病患經由光動力療法治療後其復原情形。我們將列出其中兩位病患治療後的結果,並藉由上述三種診斷指標來分析光學同調斷層掃 瞄系統的掃瞄結果。 | zh_TW |
| dc.description.abstract | Oral cavity cancer has recently become the fourth leading cancer for men in Taiwan. The main causes include the habits of alcoholconsumption, chewing betel nuts (Areca catechu) and smoking cigarettes.For patients with ocalized diseases (earlier phases) at diagnosis, the 5-yr survival rate is as high as 75%, which reveals the significances of earlydiagnosis. Oral cancer study including lesion canning and diagnosisindicator analysis are demonstrated.In the dissertation, we first demonstrate the ex vivo imaging of oralcancerous samples with a SS-OCT system. With the axial resolution of 8um in free space and system sensitivity of 108 dB in this system, we can well differentiate normal and abnormal oral tissue samples. We analyze the lateral variation of A-mode scanning profiles to show two parameters of SS-OCT signal including decay constant in the exponential fitting and standard deviation of the SS-OCT signal intensity for determining the lateral expansion range of abnormal oral tissue. Then, the SS-OCT system
is equipped with a probe for clinical oral cavity scanning. In clinical diagnosis, three indicators, including the standard deviation (SD) of an A-mode scan signal profile, the exponential decay constant (α) of an A-mode-scan spatial-frequency spectrum, and the epithelium thickness (T) when the boundary between epithelium and iii lamina propria can still be identified, are proposed. The sensitivity and specificity of the three indicators are discussed based on universal and individual relative criteria. It is found that SD and α are good diagnosisindicators for MD and SCC. On the other hand, T is a good diagnosisindicator for EH and MD. The SS-OCT system is also used to clinically scan oral cancerpatients for tracking the progress of photodynamic therapy. The progresses of two patient cases are reported based on the calibrations of the variation trends of three indicators mentioned above. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:21:42Z (GMT). No. of bitstreams: 1 ntu-97-D91941005-1.pdf: 7275895 bytes, checksum: f3a7debb98a5a04e304fd63689613634 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Contents
中文摘要 ………………………………………………………….i Abstract………………………………………………………………ii Contents……………………………………………………………...iv Chapter 1 Optical Coherence Tomography 1.1 Introduction……………………………………………2 1.2 Optical Coherence Tomography….……………………3 1.3 Time-domain Optical Coherence Tomography……….8 1.4 Fourier-domain Optical Coherence Tomography…….11 1.4.1 Spectral-domain Optical Coherence Tomography………12 1.4.2 Swept-source optical Coherence Tomography…….……14 1.5 Functional Imaging of OCT………………………..17 1.5.1 Optical Doppler Tomography………………..………17 1.5.2 Polarization-sensitive OCT (PS-OCT)…...….…...……19 1.6 Research Motivation and Organization of this Dissertation..………...………………….……………21 References…………………………………………………25 Chapter 2 Study on the Oral Mucosa Structures with OCT 2.1 Oral Mucosa…………………………………………32 2.2 Histology and OCT Images…………………………34 2.3 Oral Cancer...............................................................37 2.4 Photodynamic Therapy..........................................39 References………………………………………………41 Chapter 3 Delineation of an Oral Cancer Lesion with Swept-source optical Coherence Tomography 3.1 Introduction and Motivation…..………………………44 3.2 Swept-source optical coherence Tomography system…………………………………………………46 3.3 Ex vivo Scanning Results………………..……………48 3.4 Image analysis and Discussions………….……………51 3.5 Summary……………………...……………………….58 References…………………………………………………59 Chapter 4 Effective Indicators of Using Optical Coherence Tomography for Oral Cancer Diagnosis 4.1 Introduction…………………………………………62 4.2 SS-OCT scan……………...………………………….63 4.3 Calibrations of SS-OCT images for the Indicators of Mucosa Diagnosis……………………………………66 4.4 Sensitivity and Specificity………...…………………73 4.5 Summary……………………………………………86 Reference………………………………………………87 Chapter 5 Tracking the Progressive Regression of Oral Cancer after Photodynamic Therapy with Swept-source Optical Coherence Tomography 5.1 Introduction…………………………………………90 5.2 Photodynamic Therapy Procedure……………….90 5.3 Optical Coherence Tomography system..………….93 5.4 Optical Coherence Tomography scanning and Image analysis……………………..………………………95 5.5 Summary……………………………………………..107 References………………………………………………..108 Chapter 6 Conclusions…………………………………….……...110 Publication List…………..………………………….112 | |
| dc.language.iso | en | |
| dc.subject | 光學同調斷層掃瞄 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 醫學影像 | zh_TW |
| dc.subject | Oral Cancer | en |
| dc.subject | Optical Coherence Tomography | en |
| dc.subject | Biomedical imaging | en |
| dc.title | 光學同調斷層掃瞄技術於口腔癌診斷之研究 | zh_TW |
| dc.title | Study on Oral Cancer Diagnosis with
Optical Coherence Tomography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 江俊斌(Chun-Ping Chiang) | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),林啟萬(Chii-Wann Lin),林亮宇(Lian-Yu Lin),翁昭旼(JAU-MIN WONG),陳信銘(Hsin-Ming Chen),周晟(Chen Chou) | |
| dc.subject.keyword | 光學同調斷層掃瞄,口腔癌,醫學影像, | zh_TW |
| dc.subject.keyword | Optical Coherence Tomography,Oral Cancer,Biomedical imaging, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
