請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林立德(Li-Den Lin) | |
| dc.contributor.author | En-Ming Shen | en |
| dc.contributor.author | 沈恩銘 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:21:23Z | - |
| dc.date.available | 2012-12-24 | |
| dc.date.copyright | 2008-08-14 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | 1. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
2. Sennerby L, Roos J. Surgical determinants of clinical success of osseointegrated oral implants: a review of the literature. Int J Prosthodont 1998;11(5):408-20. 3. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52(2):155-70. 4. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 1996;7(3):261-7. 5. Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5(4):347-59. 6. Zarb GA, Zarb FL. Tissue integrated dental prostheses. Quintessence Int 1985;16(1):39-42. 7. Albrektsson T, Jansson T, Lekholm U. Osseointegrated dental implants. Dent Clin North Am 1986;30(1):151-74. 8. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11(5):491-501. 9. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6(2):142-6. 10. Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 1987;2(2):69-75. 11. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988;3(1):21-4. 12. Johansson CB, Sennerby L, Albrektsson T. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and Vitallium implants. Int J Oral Maxillofac Implants 1991;6(4):437-41. 13. Goheen KL, Vermilyea SG, Vossoughi J, Agar JR. Torque generated by handheld screwdrivers and mechanical torquing devices for osseointegrated implants. Int J Oral Maxillofac Implants 1994;9(2):149-55. 14. White SC, Pharoah MJ E. Oral Radiology principle and interpretation. Missouri : Mosby. 15. Olive J, Aparicio C. Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants 1990;5(4):390-400. 16. Teerlinck J, Quirynen M, Darius P, van Steenberghe D. Periotest: an objective clinical diagnosis of bone apposition toward implants. Int J Oral Maxillofac Implants 1991;6(1):55-61. 17. van Steenberghe D, Klinge B, Linden U, Quirynen M, Herrmann I, Garpland C. Periodontal indices around natural and titanium abutments: a longitudinal multicenter study. J Periodontol 1993;64(6):538-41. 18. Carr AB, Papazoglou E, Larsen PE. The relationship of Periotest values, biomaterial, and torque to failure in adult baboons. Int J Prosthodont 1995;8(1):15-20. 19. Derhami K, Wolfaardt JF, Faulkner G, Grace M. Assessment of the periotest device in baseline mobility measurements of craniofacial implants. Int J Oral Maxillofac Implants 1995;10(2):221-9. 20. Aparicio C. The use of the Periotest value as the initial success criteria of an implant: 8-year report. Int J Periodontics Restorative Dent 1997;17(2):150-61. 21. Meredith N. A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants. Crit Rev Biomed Eng 1998;26(4):275-91. 22. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J. Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res 2004;15(5):520-8. 23. Balshi SF, Allen FD, Wolfinger GJ, Balshi TJ. A resonance frequency analysis assessment of maxillary and mandibular immediately loaded implants. Int J Oral Maxillofac Implants 2005;20(4):584-94. 24. Huang HM, Pan LC, Lee SY, Chiu CL, Fan KH, Ho KN. Assessing the implant/bone interface by using natural frequency analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;90(3):285-91. 25. Huang HM, Chiu CL, Yeh CY, Lee SY. Factors influencing the resonance frequency of dental implants. J Oral Maxillofac Surg 2003;61(10):1184-8. 26. Huang HM, Chiu CL, Yeh CY, Lin CT, Lin LH, Lee SY. Early detection of implant healing process using resonance frequency analysis. Clin Oral Implants Res 2003;14(4):437-43. 27. 黃豪銘, 鄭光祐, 鄭碧瑩, 陳信吉, 陳俊良, 連榮義, et al. 人工牙根穩固度檢測儀之設計與驗證. 中華牙誌 2003;22(2):111-20. 28. Bischof M, Nedir R, Szmukler-Moncler S, Bernard JP, Samson J. Implant stability measurement of delayed and immediately loaded implants during healing. Clin Oral Implants Res 2004;15(5):529-39. 29. Ostman PO, Hellman M, Wendelhag I, Sennerby L. Resonance frequency analysis measurements of implants at placement surgery. Int J Prosthodont 2006;19(1):77-83; discussion 84. 30. Friberg B, Sennerby L, Linden B, Grondahl K, Lekholm U. Stability measurements of one-stage Branemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg 1999;28(4):266-72. 31. Friberg B, Sennerby L, Meredith N, Lekholm U. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg 1999;28(4):297-303. 32. Barewal RM, Oates TW, Meredith N, Cochran DL. Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 2003;18(5):641-51. 33. Sjostrom M, Lundgren S, Nilson H, Sennerby L. Monitoring of implant stability in grafted bone using resonance frequency analysis. A clinical study from implant placement to 6 months of loading. Int J Oral Maxillofac Surg 2005;34(1):45-51. 34. Aparicio C, Lang NP, Rangert B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin Oral Implants Res 2006;17 Suppl 2:2-7. 35. 李勝揚, 黃豪銘, 潘力誠, 施永勳, 林光勳, 林哲堂, et al. 骨質狀態對人工牙根共振頻率分析之影響. 中華牙誌 2000;19(3):183-92. 36. 邱慶來. 人工牙根植體邊界狀態及骨癒合之自然頻率分析. 私立台北醫學院口腔復健醫學研究所碩士論文 2000. 37. 吳成哲. 比較諧振響應法與激振衝擊法分析牙科植體穩固度之研究. 私立台北醫學院口腔復健醫學研究所碩士論文 2005. 38. Pattijn V, Jaecques SV, De Smet E, Muraru L, Van Lierde C, Van der Perre G, et al. Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer. Med Eng Phys 2007;29(2):182-90. 39. Huwiler MA, Pjetursson BE, Bosshardt DD, Salvi GE, Lang NP. Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant installation. Clin Oral Implants Res 2007;18(3):275-80. 40. O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 2001;12(6):648-57. 41. Katranji A, Misch K, Wang HL. Cortical bone thickness in dentate and edentulous human cadavers. J Periodontol 2007;78(5):874-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37206 | - |
| dc.description.abstract | 目的:共振頻率分析目前已廣泛使用於評估植體周圍骨頭硬度與植體的穩定度,其中OsstellTM將共振頻率轉換成ISQ值的應用最廣。許多的研究顯示ISQ值與植體暴露高度或周圍骨質密度有高度相關性。然而,植體周圍的皮質骨或海綿骨如何影響ISQ值,或植體周圍不同部位骨質的缺陷是否會影響ISQ測量值卻不得而知。因此,本實驗旨在利用不同組合已知密度的人造骨並在植體周圍不同部位製造骨缺陷來探究其中的影響。
材料與方法:實驗共分六組,每組有五個樣本。每一組均以直徑3mm之鑽針鑽孔,並鎖入Branemark® (Nobel Biocare AB, Göteborg, Sweden ) TiUniteTM MK III 3.75 x 10 mm植體。A組為對照組,於兩側貼有50pcf人造骨的15pcf人造骨塊單純鑽洞並植入植體。B、C組除了在模擬海綿骨人造骨塊兩側貼上50 pcf人造骨外,在植體鑽入處(側)也有50 pcf人造骨貼覆。B、C兩組的差異在B組內由15 pcf人造骨構成海綿骨部分,C組則由40 pcf人造骨構成內部海綿骨部分。D、E、F組中,人造骨的組成與A組同:D組,模擬植體鎖入後鄰近植體平台(platform)旁有一新月型深3mm的缺口。E組,製造一個缺口位於植體植入處靠其中一側長邊的鄰面上,使得植體穿入後於植體中段螺紋處旁有一缺陷。F組,在預鑽孔時鑽深14mm,使植體根尖產生一缺陷。在鎖入植體後將OsstellTM轉接器(transducer)依照廠商指示固定在植體上,每一個樣本轉接器分別以垂直樣本長邊對著相對骨缺陷一側的方向(Av1)、平行樣本長邊的方向(Ap)與Av1相對180度(Av2)等三種方向進行測量,每一個方向均測量其共振頻率值三次。實驗結果使用SPSS 15.0 套裝統計軟體,同一組內針對轉接器不同方向的比較分析使用無母數相關性樣本分析Wilcoxon test,而不同組間不論是轉接器相同方向或不同方向的比較分析是使用無母數獨立樣本分析Mann-Whitney U test。 結果:實驗結果在A組與B組的比較中,有統計上有顯著的結果(p<0.05)。在B、C組間的比較無統計上顯著的結果,只有B組與C組各自在L型轉接器不同方向測量值的比較時,在轉接器於兩不同方向測量值的比較有統計上顯著結果(p<0.05)。在D、E、F與對照組間轉接器方向相同時的比較,統計結果上均無明顯差異,只有在D組內Dv1與Dp間有統計上顯著的差異( p<0.05 )。 結論:由實驗結果推論在植體周圍的海綿骨與皮質骨中,皮質骨對ISQ測量值的影響較大。在轉動L型轉接器時,位於植體平台旁新月形的缺陷,會讓L型轉接器在不同的方向測到不同的結果,但位於植體中段或根尖的缺陷,不會影響L型轉接器測量的值。 | zh_TW |
| dc.description.abstract | Objectives: ISQ readings from Osstell machine (resonance frequency analysis) have been used widely to represent the stiffness of peri-implant supporting bone and implant stability. ISQ has been related to bone height and bone quality. However, it is not clear how the cortical layer or trabecular bone contributes to ISQ and whether a bony defect neighboring to an implant affects ISQ. This study's aim was to answer the above questions.
Material and Methods: Sawbones with 15pcf, 40 pcf and 50pcf densities were cut into blocks with different sizes respectively and combined into different assembles to represent the trabecular bone block and cortical layer. Six different groups were tested: Group A, 15pcf trabecular bone block with 50 pcf cortical layer on both sides as controlled group. Group B, 15pcf trabecular bone block with 50 pcf cortical layer on top and both sides. Group C, 40pcf trabecular bone block with 50 pcf cortical layer on top and both sides. Groups D,E,F were all made by 15pcf trabecular bone block with 50 pcf cortical layer on both sides. Group D had a defect created near the implant platform. Group E had a defect created near the midportion of implant. Group F had a defect created near the apical portion of implant. All the sample were invested with hard stone on both end to protect the sample from distortion when fixation with 10 kg force on the drilling machine. An implant (Branemark® TiUniteTM MK III 3.75x10mm , Nobel Biocare AB, Göteborg, Sweden) was screwed at the center of 40x10 mm surface of each bone block after a 3mm drilling site preparation. Each group had 5 samples. An L-shaped OsstellTM transducer was attached to the implant and each sample was tested 3 times with the transducer in M-D or B-L direction. Within the same group, nonparametric related sample test (Wilcoxon test) was performed. Nonparametric independent sample test (Mann-Whitney U test) was applied when data between two groups to detect significant difference. Results:The results showed that significant differences between group A and B were found, but no significant different between group B and C. The direction of transducer could affect ISQ if samples with a cortical layered on top or defects appearing neighbor to the implant plateform (p< 0.05). Conclusion: The findings suggest that cortical bone and trabecular bone contribute differently to ISQ and defects in supporting bone may affect ISQ. Further experiments are necessary to understand ISQ. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:21:23Z (GMT). No. of bitstreams: 1 ntu-97-R94422017-1.pdf: 2051360 bytes, checksum: 102a80d5542a4f613c59a4907c315b93 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III Abstract V 目 錄 VII 圖目錄 IX 表目錄 X 第一章 緒論 1 研究動機與重要性 1 第二章 文獻回顧 3 第一節 研究背景 3 第二節 共振頻率分析儀 7 第三節 共振頻率分析儀的臨床應用 11 第四節 研究目的 15 第三章 材料與方法 16 第一節 實驗材料與設備 16 第二節 先趨研究(Pilot Study) 18 第三節 正式研究 24 第四章 研究結果 32 第五章 討論 39 第一節 先趨研究 39 第二節 不同人造骨對ISQ值的影響 41 第三節 位於植體不同部位的缺陷對ISQ值的影響 43 第六章 結論 46 參考文獻 48 附錄 53 附錄一 設備流程圖 53 附錄二 鑽石切割機 54 附錄三 研磨與鑽孔機 55 附錄四 研磨與鑽孔機轉速表 56 附錄五 研磨與鑽孔機規格書 57 附錄六 荷重元規格書 58 附錄七 OsstellTM與植體連接圖 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物機械 | zh_TW |
| dc.subject | 共振頻率分析 | zh_TW |
| dc.subject | 牙科植體 | zh_TW |
| dc.subject | 口腔植體 | zh_TW |
| dc.subject | 植牙 | zh_TW |
| dc.subject | Biomechanics | en |
| dc.subject | Implantology | en |
| dc.subject | Oral implantology | en |
| dc.subject | RFA | en |
| dc.subject | Implants | en |
| dc.title | 植體周圍骨頭條件的變化對共振頻率測量值的影響 | zh_TW |
| dc.title | Resonance Frequency Reading of Different Peri-implant Bony Conditions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王若松,王兆麟 | |
| dc.subject.keyword | 共振頻率分析,牙科植體,口腔植體,植牙,生物機械, | zh_TW |
| dc.subject.keyword | RFA,Implantology,Oral implantology,Implants,Biomechanics, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
