請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖(Jeffrey Chi-Sheng Wu) | |
| dc.contributor.author | Cheng-Wei Chang | en |
| dc.contributor.author | 張展瑋 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:21:07Z | - |
| dc.date.available | 2015-12-31 | |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-11 | |
| dc.identifier.citation | [1] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
[2] R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation, The Journal of Physical Chemistry B, 108 (2004) 8992-8995. [3] C.C. Lo, C.W. Huang, C.H. Liao, Jeffrey C. S. Wu, Novel Twin Reactor for Separate Evolution of Hydrogen and Oxygen in Photocatalytic Water Splitting, Int. J. Hydrogen Energy, 35(4) (2010) 1523-1529. [4] 游 思淳, 吳 紀聖, 光催化水分解雙反應器之離子媒介傳輸現象, 國立台灣大學碩士論文 (2010) 102-140. [5] A. Kudo, H. Kato, and I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting, Chemistry Letters, 33 (2004) 1534-1539. [6] Maeda, K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light, The Journal of Physical Chemistry C, 111 (2007) 7851-7861. [7] A. Kudo, Photocatalyst material for water splitting, Catalysis Surveys from Asia, 7 (2003) 31-38. [8] N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989, p.45-52. [9] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. [10] A. Mills, R.H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chemical Society Reviews, 22(6) (1993) 417-425. [11] H. Kato, A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), The Journal of Physical Chemistry B, 105 (2001) 4285-4292. [12] K. Fujihara, T. Ohno, M. Matsumura, Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles, Journal of the Chemical Society, Faraday Transactions, 94 (1998) 3705-3709. [13] M. Kitano, K. Tsujimaru, M. Anpo, Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: Effect of the work function of the substrates on the yield of the reaction, Applied Catalysis A: General, 314 (2006) 179-183. [14] H. Kato, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, The Journal of Physical Chemistry B, 106 (2002) 5029-5034. [15] Kato, H., K. Asakura, and A. Kudo, Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, Journal of The American Chemical Society, 125 (2003) 3082-3089. [16] D. Yamasita, T. Takata, M. Hara, J.N. Kondo, and K. Domen, Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting, Solid State Ionics, 172 (2004) 591-595. [17] J.F. Reber, K. Meier, Photochemical production of hydrogen with zinc sulfide suspensions, The Journal of Physical Chemistry, 88 (1984) 5903-5913. [18] H. Kato, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, The Journal of Physical Chemistry B, 106 (2002) 5029-5034. [19] T. Ishii, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 163 (2004) 181-186. [20] X.Z. LI, F. B. LI, Environmental Science and Technology, 35 (2001) 2381. [21] S. Klosek, Daniel Raftery, Journal of Physical Chemistry B, 105 (2001) 2815. [22] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catalysis Letters, 53 (1998) 229-230. [23] H. Kato, H. Kobayashi, A. Kudo, Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure, The Journal of Physical Chemistry B, 106 (2002) 12441-12447. [24] G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm), Chemical Communications, (2002) 1698-1699. [25] A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Photoreactions on LaTiO2N under Visible Light Irradiation, The Journal of Physical Chemistry A, 106 (2002) 6750-6753. [26] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ ≤ 650 nm), Journal of the American Chemical Society, 124 (2002) 13547-13553. [27] A. Ishikawa, Y. Yamada, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5, Chemistry of Materials, 15 (2003) 4442-4446. [28] A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting”, Chemical Physics Letters, 331 (2000) 373-377. [29] A. Kudo, I. Mikami, Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution, Journal of the Chemical Society, Faraday Transactions, 94 (1998) 2929-2932. [30] H.C. Youn, S. Baral, J.H. Fendler, Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation, The Journal of Physical Chemistry, 92 (1988) 6320-6327. [31] H. Kato, A. Kudo, Energy structure and photocatalytic activity for water splitting of Sr2(Ta1−xNbx)2O7 solid solution, Journal of Photochemistry and Photobiology A: Chemistry 145 (2001) 129–133. [32] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature, 440 (2006) 295-295. [33] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38 (2009) 253-278. [34] K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts, The Journal of Physical Chemistry, 90 (1986) 292-295. [35] H. Kato, A. Kudo, Photocatalytic Water Splitting into H2 and O2 over Various Tantalate Photocatalysts, Catalysis Today, 78 (2003) 561-569. [36] T. Kida, G. Q. Guan, N. Yamada, T. Ma, K. Kimura, A. Yoshida, “Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation”, International Journal of Hydrogen Energy, 29 (2004) 269. [37] A. A. Nada, M. H. Barakat, H. A. Hamed, N. R. Mohamed, T. N. Veziroglu, “Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts”, International Journal of Hydrogen Energy, 30 (2005) 687-691 [38] V. Subramanian, R. K. Roeder, E. E. Wolf, “Synthesis and UV-Visible-Light Photoactivity of Noble-Metal-SrTiO3 Composites”, Ind. Eng. Chem. Res. , 45 (2006) 2187-2193. [39] D. Wang, J. Ye, T. Kako, T. Kimura, Photophysical and Photocatalytic Properties of SrTiO3 Doped with Cr Cations on Different Sites, The Journal of Physical Chemistry B, 110 (2006) 15824-15830. [40] T.A. Ring, Ceramic Powder Synthesis with Solid Phase Reactant, Academic Press, San Diego, (1996) 170-176. [41] D.J. Watson, C. A. Randall, et al. , Am. Ceram.Soc.Inc., 1 (1988) 154. [42] M. I. Diaz-Guemes, T. G. Carreno, C. J. Serna, Mechanism of formation of MTiO3(M=Sr or Ba)by the gel method, J. Mater. Sci., 24 (1989) 1011-1014. [43] J. Livage and C. Sanchez, “Sol-Gel Chemistry”, J. Non-Cryst . Solids, 145 (1992) 11-19. [44] S. Suzuki, A. Nakajima, M. Sakai, J. H. Song, N. Yoshida, Y. Kameshima, K. Okada, Sliding acceleration of water droplets on a surface coated with fluoroalkylsilane and octadecyltrimethoxysilane, Surface Science, 600 (2006) 2214-2219. [45] J. Livage, Sol-Gel Science and Technology, eds. By M. A. Aegeter, M. Jr. Jafelicci, D.F.Souza and E. D. Zanotto, World Scientific, Singapore 103 (1989) 240-247. [46] S. W. Bae, P. H. Borse, and J. S. Lee., Dopant dependent band gap tailoring of hydrothermally prepared cubic SrTixM1−xO3 (M = Ru,Rh,Ir,Pt,Pd) nanoparticles as visible light photocatalysts. Appl. Phys. Lett. 92 (2008) 104-107. [47] X. Wang, Z. Zhang and S. Zhou, Preparation of nano-crystalline SrTiO3 powder in sol-gel process, Mater. Sci. Eng. B, 86 (2001) 29–33. [48] A. Kudo, K. Omori, H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties, Journal of the American Chemical Society, 121 (1999) 11459-11467. [49] A. Goswami, A. Acharya, A.K. Pandey, Study of Self-Diffusion of Monovalent and Divalent Cations in Nafion-117 Ion-Exchange Membrane, The Journal of Physical Chemistry B, 105 (2001) 9196-9201. [50] Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0070494398. [51] Swarthmore, Powder Diffraction File No.79-0174, in JCPDS--International Center for Diffraction Data, 1997. [52] Swarthmore, Powder Diffraction File No.82-1154, in JCPDS--International Center for Diffraction Data, 1997. [53] Swarthmore, Powder Diffraction File No.86-2495, in JCPDS--International Center for Diffraction Data, 1997. [54] Swarthmore, Powder Diffraction File No.75-2480, in JCPDS--International Center for Diffraction Data, 1997. [55] Swarthmore, Powder Diffraction File No.83-1812, in JCPDS--International Center for Diffraction Data, 1997. [56] D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band-gap energies of sol-gel-derived SrTiO3 thin films, Applied Physics Letters, 79 (2001) 3767-3769. [57] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37196 | - |
| dc.description.abstract | 隨著工業社會對於能源的需求日益增加,利用太陽光能來進行水分解製氫反應,是一種可生產潔淨無污染之替代能源方式。Z-scheme雙觸媒系統是利用兩種不同之光觸媒,分別進行產氫與產氧之半反應,並利用不同的離子傳遞媒介傳遞電子與電洞,達到全反應的效果。本實驗室先前的研究指出,利用預處理過的Nafion薄膜將不同的反應觸媒系統隔開,不僅能夠藉由擴散效應傳遞離子媒介,也能達到分離氫氣與氧氣的效果,進而提升產量。本實驗使用溶凝膠法製得Pt/SrTiO3:Rh作為產氫觸媒,發現在pH值為1.5下觸媒活性最佳,在10vol%甲醇水溶液中進行可見光產氫活性測試,6小時內產氫量均可達到10 µmol/gcat以上,活性較固態熔融法和水熱法為佳,再以 BiVO4作為產氧觸媒,置入分離式雙胞膜反應器中,以Ce4+/Ce3+為電子傳遞媒介於水溶液中,利用Nafion 陽離子交換膜隔開兩觸媒,以可見光照射反應器進行水分解,達到氫氧分離的效果。實驗以300W氙燈作為可見光源,使用以Ce4+前處理的Nafion 薄膜進行反應,可達到一定的產氫效果,並且符合H2:O2=2:1的水分解化學當量比。溶凝膠法Pt/SrTiO3:Rh搭配光沉積法製備,產氧端觸媒使用液相合成法製備BiVO4,而使用雙胞膜反應器,由於減少了氫氧逆反應的機會,可提升產氫的速率,將兩邊觸媒分開也可解決觸媒之間混合在一起之光源競爭吸收問題,並且期望測試鈰離子傳遞媒介存在下的最佳反應條件,以期提升產氫效能。 | zh_TW |
| dc.description.abstract | With the increasing demand for energy in the industrial society, using solar energy to produce hydrogen by water splitting is an alternative clean and pollution-free way to produce energy. Z-scheme system is the use of two different kinds of photocatalysts to do half-reaction of water splitting , respectively, and the use of different transmission medias to transmit electrons and holes, and finally completes the whole reaction. Previous studies in our laboratory point out that the use of pretreated Nafion membrane to separate the different reaction catalyst systems, not only to pass through ion transfer mediator by diffusion effect, but also to separate hydrogen and oxygen, and thus enhance the production. In this study, first we use sol-gel method to produce Pt/SrTiO3:Rh catalyst as hydrogen production, then put it in 10vol% methanol aqueous solution to do the test of hydrogen production activity in visible light , and hydrogen production can reach 10 µmol / gcat within 6 hours. We found that at pH 1.5 the catalytic activity is the best. Producing SrTiO3 by sol-gel method can get higher activity than using solid-state method and hydrothermal method. Secondly, we add BiVO4 as oxygen production into the twin membrane reactor, and Ce4+/Ce3+ as ion transfer mediators in the aqueous solution, and use Nafion cation exchange membrane to separate the two catalysts to do water decomposition in visible light. Besides , the membrane can separate hydrogen and oxygen. In our study we use 300W xenon lamp as the visible light source and Ce4+ pre-treated Nafion membrane to separate two sides of half-reaction. The result is that the hydrogen production can be achieved certain level, and that in line with H2/O2 = 2 stoichiometric decomposition of water. Pt/SrTiO3:Rh is prepared by Sol-gel method with light deposition method, and BiVO4 is produced by liquid phase synthesis. The use of double-membrane reactor can reduce the chance of reversing reaction of hydrogen and oxygen, therefore it enhance hydrogen production rate. Separating two sides of the catalysts can also solve the problem of competitive absorption of light. We expect to test the best reaction conditions in the presence of cerium ions in order to improve the hydrogen production performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:21:07Z (GMT). No. of bitstreams: 1 ntu-100-R98524047-1.pdf: 21586687 bytes, checksum: 5b1516172972b12e57922e4e0c987c60 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 第一章 緒論………………………………………………………………………..1
第二章 文獻回顧…………………………………………………………………..3 2.1 原理 3 2.1.1 光觸媒基本理論與水分解…………………………………………….3 2.1.2 光觸媒反應的基本原理…………………………………………….....6 2.1.3 光反應器型式 8 2.2 影響水分解反應的因素 9 2.2.1 光催化與犧牲試劑的原理 10 2.2.2 金屬元素摻雜型光觸媒之效應 14 2.2.3 共觸媒元素負載效應 19 2.2.4 其它增加光觸媒活性的方式 21 2.3 鈦酸鍶觸媒 22 2.3.1 固態熔融法製備 23 2.3.2 水熱法製備 24 2.3.3 溶凝膠法製備 25 2.4 光催化水分解系統 28 2.4.1 單一光觸媒反應系統 28 2.4.2 雙光觸媒反應系統 30 第三章 實驗方法 31 3.1 實驗藥品與儀器設備 31 3.1.1 藥品 31 3.1.2 器材 33 3.2 產氫觸媒之製備 34 3.2.1 固態高溫熔融法( Solid-State Fusion Method ) 34 3.2.2 水熱法(Hydrothermal Method) 39 3.2.3 溶凝膠法(Sol-Gel Method) 40 3.2.4 光催化沈積法( Photocatalytic Deposition Method ) 42 3.3 產氧觸媒製備-液相合成法(Aqueous synthesis process) 43 3.4 陽離子交換薄膜預前處理步驟 45 3.5 鈰離子傳遞媒介擴散實驗裝置 47 3.6 觸媒特性分析原理 …………………………………………………………49 3.6.1 儀器型號與規格 49 3.6.2 X光繞射儀(X-Ray Diffractometer,XRD) 49 3.6.3 紫外線-可見光光譜儀(UV-Visible Diffuse Reflectance Spectroscopy) 54 3.6.4 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, SEM) 51 3.6.5 能量分散光譜儀( Energy Dispersive Spectrometer,EDS ) 57 3.6.5 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 58 3.6.6 比表面積分析儀( Specific Surface Area Analyzer,BET ) 59 3.6.7 X光光電子能譜儀( X-ray Photoelectron Spectroscopy,XPS ) 60 3.6.8 氣相管柱層析儀–熱導偵測器( GC–TCD ) 61 3.7 光反應活性檢測 63 3.7.1 氫氣檢量線製作 63 3.7.2 氧氣與氮氣檢量線製作 66 3.7.3 光催化水分解單一反應器系統活性測試(Single-Reactor Activity Test) 69 3.7.4 光催化水分解反應條件試驗-分離式雙胞膜反應器系統(Twin Membrane Reactor System ) 76 第四章 觸媒檢測與分析 79 4.1 UV-Vis吸收光譜 79 4.2 XRD晶格繞射分析 82 4.3 SEM掃描式電子顯微鏡 86 4.4 EDS能量分散光譜 88 4.5 TEM穿透式電子顯微鏡 89 4.6 XPS表面元素價態分析 91 4.7 BET比表面積測定 92 第五章 光催化反應實驗結果與討論 79 5.1 產氫端觸媒活性測試比較 93 5.1.1 觸媒製備法選定因素 93 5.1.2 溶凝膠法製備參數因素 95 5.1.3 觸媒最佳添加量因素 97 5.2 光催化水分解試驗於單一反應器 100 5.2.1 四價鈰離子溶液反應試驗 100 5.2.2 三價鈰離子溶液反應試驗 103 5.2.3 不同價數鈰離子溶液反應比較 105 5.3 光催化水分解試驗於雙胞膜反應器 107 5.4 離子擴散平衡下的反應活性 110 5.4.1 鈰離子擴散平衡實驗 110 5.4.2 鐵離子擴散平衡實驗 112 5.4.3 離子濃度的平衡參數活性影響 113 第六章 結論 117 第七章 參考資料 118 附錄……………………………………………………………………………………..122 個人小傳 125 | |
| dc.language.iso | zh-TW | |
| dc.title | 以溶凝膠製得Pt/SrTiO3:Rh在鈰離子傳遞媒介下雙胞膜反應器進行可見光水分解 | zh_TW |
| dc.title | Photocatalytic water splitting using sol-gel prepared Pt/SrTiO3:Rh in twin membrane reactor via Ce ions mediator by visible light irradiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 萬本儒(Ben-Zu Wan),白曛綾(Hsun-ling Bai),林欣瑜(Hsin-yu Lin) | |
| dc.subject.keyword | 光催化水分解,離子傳輸,產氫技術, | zh_TW |
| dc.subject.keyword | Photocatalytic water splitting,ion transportation,hydrogen evolution, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 21.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
