請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37173
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林光華(Kwan-Hwa Lin) | |
dc.contributor.author | Rong-Jiuan Liing | en |
dc.contributor.author | 嶺榮娟 | zh_TW |
dc.date.accessioned | 2021-06-13T15:20:36Z | - |
dc.date.available | 2016-10-07 | |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-11 | |
dc.identifier.citation | 1. Chen HY, Chen SS, Chiu WT, Lee LS, Hung CI, Hung CL et al. A nationwide epidemiological study of spinal cord injury in geriatric patients in Taiwan. Neuroepidemiology 1997;16:241-7.
2. Chen CF, Lien IN, Wu MC. Respiratory function in patients with spinal cord injuries: effects of posture. Paraplegia 1990;28:81-6. 3. Bluechardt MH, Wiens M, Thomas SG, Plyley MJ. Repeated measurements of pulmonary function following spinal cord injury. Paraplegia 1992;30:768-74. 4. De Troyer A, Estenne M. Chest wall motion in paraplegic subjects. Am Rev Respir Dis 1990;141:332-6. 5. Urmey W, Loring S, Mead J, Slutsky AS, Sarkarati M, Rossier A et al. Upper and lower rib cage deformation during breathing in quadriplegics. J Appl Physiol 1986;60:618-22. 6. Winslow C, Rozovsky J. Effect of spinal cord injury on the respiratory system. Am J Phys Med Rehabil 2003;82:803-14. 7. Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 1967;22:407-22. 8. Ferrigno G, Carnevali P, Aliverti A, Molteni F, Beulcke G, Pedotti A. Three-dimensional optical analysis of chest wall motion. J Appl Physiol 1994;77:1224-31. 9. Cala SJ, Kenyon CM, Ferrigno G, Carnevali P, Aliverti A, Pedotti A et al. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol 1996;81:2680-9. 10. Kenyon CM, Cala SJ, Yan S, Aliverti A, Scano G, Duranti R et al. Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol 1997;83:1242-55. 11. De Groote A, Wantier M, Cheron G, Estenne M, Paiva M. Chest wall motion during tidal breathing. J Appl Physiol 1997;83:1531-7. 12. Aliverti A, Ghidoli G, Dellaca RL, Pedotti A, Macklem PT. Chest wall kinematic determinants of diaphragm length by optoelectronic plethysmography and ultrasonography. J Appl Physiol 2003;94:621-30. 13. Ferrigno G, Carnevali P. Principal component analysis of chest wall movement in selected pathologies. Med Biol Eng Comput 1998;36:445-51. 14. Romagnoli I, Gigliotti F, Lanini B, Bianchi R, Soldani N, Nerini M et al. Chest wall kinematics and respiratory muscle coordinated action during hypercapnia in healthy males. Eur J Appl Physiol 2004;91:525-33. 15. Cobb S, Blodgett DJ, Olson KB, Stranahan A. Determination of total lung capacity in disease from routine chest roentgenograms. Am J Med 1954;16:39-54. 16. Delgado HR, Braun SR, Skatrud JB, Reddan WG, Pegelow DF. Chest wall and abdominal motion during exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1982;126:200-5. 17. Sharp JT, Goldberg NB, Druz WS, Danon J. Relative contributions of rib cage and abdomen to breathing in normal subjects. J Appl Physiol 1975;39:608-18. 18. Mortola JP, Sant'Ambrogio G. Motion of the rib cage and the abdomen in tetraplegic patients. Clin Sci Mol Med 1978;54:25-32. 19. Hoffman EA, Sinak LJ, Robb RA, Ritman EL. Noninvasive quantitative imaging of shape and volume of lungs. J Appl Physiol 1983;54:1414-21. 20. Krayer S, Rehder K, Beck KC, Cameron PD, Didier EP, Hoffman EA. Quantification of thoracic volumes by three-dimensional imaging. J Appl Physiol 1987;62:591-8. 21. Kondo T, Arita H, Ohta Y, Yamabayashi H. Role of the mediastinum as a part of the chest wall: analyzed by computed tomography. Respiration 1989;56:116-26. 22. Gauthier AP, Verbanck S, Estenne M, Segebarth C, Macklem PT, Paiva M. Three-dimensional reconstruction of the in vivo human diaphragm shape at different lung volumes. J Appl Physiol 1994;76:495-506. 23. Gierada DS, Curtin JJ, Erickson SJ, Prost RW, Strandt JA, Goodman LR. Diaphragmatic motion: fast gradient-recalled-echo MR imaging in healthy subjects. Radiology 1995;194:879-84. 24. Cluzel P, Similowski T, Chartrand-Lefebvre C, Zelter M, Derenne JP, Grenier PA. Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations. Radiology 2000;215:574-83. 25. Kondo T, Kobayashi I, Taguchi Y, Ohta Y, Yanagimachi N. A dynamic analysis of chest wall motions with MRI in healthy young subjects. Respirology 2000;5:19-25. 26. Plathow C, Ley S, Fink C, Puderbach M, Heilmann M, Zuna I et al. Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 2004;39:202-9. 27. Vogiatzis I, Aliverti A, Golemati S, Georgiadou O, Lomauro A, Kosmas E et al. Respiratory kinematics by optoelectronic plethysmography during exercise in men and women. Eur J Appl Physiol 2005;93:581-7. 28. Haber K, Asher M, Freimanis AK. Echographic evaluation of diaphragmatic motion in intra-abdominal diseases. Radiology 1975;114:141-4. 29. Bih LI, Wu YT, Tsai SJ, Tseng FF, Lin CY, Ding H. Comparison of ultrasonographic renal excursion to fluoroscopic diaphragmatic excursion for the assessment of diaphragmatic function in patients with high cervical cord injury. Arch Phys Med Rehabil 2004;85:65-9. 30. Kantarci F, Mihmanli I, Demirel MK, Harmanci K, Akman C, Aydogan F et al. Normal diaphragmatic motion and the effects of body composition: determination with M-mode sonography. J Ultrasound Med 2004;23:255-60. 31. Estenne M, De Troyer A. The effects of tetraplegia on chest wall statics. Am Rev Respir Dis 1986;134:121-4. 32. Oo T, Watt JW, Soni BM, Sett PK. Delayed diaphragm recovery in 12 patients after high cervical spinal cord injury. A retrospective review of the diaphragm status of 107 patients ventilated after acute spinal cord injury. Spinal Cord 1999;37:117-22. 33. De Troyer A, Estenne M. Coordination between rib cage muscles and diaphragm during quiet breathing in humans. J Appl Physiol 1984;57:899-906. 34. De Troyer A, Estenne M, Ninane V, Van Gansbeke D, Gorini M. Transversus abdominis muscle function in humans. J Appl Physiol 1990;68:1010-6. 35. Abe T, Kusuhara N, Yoshimura N, Tomita T, Easton PA. Differential respiratory activity of four abdominal muscles in humans. J Appl Physiol 1996;80:1379-89. 36. Estenne M, De Troyer A. Relationship between respiratory muscle electromyogram and rib cage motion in tetraplegia. Am Rev Respir Dis 1985;132:53-9. 37. Lin KH, Chuang CC, Wu HD, Chang CW, Kou YR. Abdominal weight and inspiratory resistance: their immediate effects on inspiratory muscle functions during maximal voluntary breathing in chronic tetraplegic patients. Arch Phys Med Rehabil 1999;80:741-5. 38. ASIA, editor Standards for Classification of Spinal Injured Patients. Chicago: American Spinal Injury Association.; 1982. 39. ASIA. Standards for classification of spinal injured patients.: American Spinal Injury Association; 1992. 40. ASIA. Reference Manual for the International Standards for Neurological Classification of Spinal Cord Injury. Chicago: American Spinal Injury Association; 2003. 41. Maynard FM, Jr., Bracken MB, Creasey G, Ditunno JF, Jr., Donovan WH, Ducker TB et al. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord 1997;35:266-74. 42. Lin KH, Chuang CC, Kao MJ, Lien IN, Tsauo JY. Quality of life of spinal cord injured patients in Taiwan: a subgroup study. Spinal Cord 1997;35:841-9. 43. Aliverti A, Dellaca R, Pelosi P, Chiumello D, Gatihnoni L, Pedoti A. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Annals of biomedical engineering 2001;29:60-70. 44. Wang HK, Lu TW, Liing RJ, Shih TT, Chen SC, Lin KH. Relationship between chest wall motion and diaphragmatic excursion in healthy adults in supine position. J Formos Med Assoc 2009;108:577-86. 45. Rodarte JR, Reder K. Dynamics of respiration. In: Macklem PT, Mead J, editors. Handbook of physiology The respiratory system Mechanics of breathing. Bethesda: American Physiological Society; 1986. p 131-44. 46. Hyatt RE, Flath RE. Relationship of air flow to pressure during maximal respiratory effort in man. J Appl Physiol 1966;21:477-82. 47. Gerscovich EO, Cronan M, McGahan JP, Jain K, Jones CD, McDonald C. Ultrasonographic evaluation of diaphragmatic motion. J Ultrasound Med 2001;20:597-604. 48. Mead J, Loring SH. Analysis of volume displacement and length changes of the diaphragm during breathing. J Appl Physiol 1982;53:750-5. 49. Bernstein L, Shepard RH, Jr. High resolution display for variables in volume-displacement body plethysmography. J Appl Physiol 1966;21:721-4. 50. Aliverti A, Dellaca R, Pelosi P, Chiumello D, Pedotti A, Gattinoni L. Optoelectronic plethysmography in intensive care patients. Am J Respir Crit Care Med 2000;161:1546-52. 51. Cohen E, Mier A, Heywood P, Murphy K, Boultbee J, Guz A. Excursion-volume relation of the right hemidiaphragm measured by ultrasonography and respiratory airflow measurements. Thorax 1994;49:885-9. 52. Houston JG, Angus RM, Cowan MD, McMillan NC, Thomson NC. Ultrasound assessment of normal hemidiaphragmatic movement: relation to inspiratory volume. Thorax 1994;49:500-3. 53. Binazzi B, Bianchi R, Romagnoli I, Lanini B, Stendardi L, Gigliotti F et al. Chest wall kinematics and Hoover's sign. Respiratory physiology & neurobiology 2008;160:325-33. 54. Harris RS, Giovannetti M, Kim BK. Normal ventilatory movement of the right hemidiaphragm studied by ultrasonography and pneumotachography. Radiology 1983;146:141-4. 55. Mansel JK, Norman JR. Respiratory complications and management of spinal cord injuries. Chest 1990;97:1446-52. 56. DeVivo MJ, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil 1999;80:1411-9. 57. Jackson AB, Groomes TE. Incidence of respiratory complications following spinal cord injury. Arch Phys Med Rehabil 1994;75:270-5. 58. Winslow C, Bode RK, Felton D, Chen D, Meyer PR, Jr. Impact of respiratory complications on length of stay and hospital costs in acute cervical spine injury. Chest 2002;121:1548-54. 59. De Troyer A, Estenne M, Vincken W. Rib cage motion and muscle use in high tetraplegics. Am Rev Respir Dis 1986;133:1115-9. 60. McCool FD, Pichurko BM, Slutsky AS, Sarkarati M, Rossier A, Brown R. Changes in lung volume and rib cage configuration with abdominal binding in quadriplegia. J Appl Physiol 1986;60:1198-202. 61. Romagnoli I, Gorini M, Gigliotti F, Bianchi R, Lanini B, Grazzini M et al. Chest wall kinematics, respiratory muscle action and dyspnoea during arm vs. leg exercise in humans. Acta Physiol (Oxf) 2006;188:63-73. 62. Aliverti A, Stevenson N, Dellaca RL, Lo Mauro A, Pedotti A, Calverley PM. Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax 2004;59:210-6. 63. Bianchi R, Gigliotti F, Romagnoli I, Lanini B, Castellani C, Binazzi B et al. Patterns of chest wall kinematics during volitional pursed-lip breathing in COPD at rest. Respir Med 2007;101:1412-8. 64. Ali J, Qi W. Pulmonary function and posture in traumatic quadriplegia. J Trauma 1995;39:334-7. 65. Short DJ, Silver JR, Lehr RP. Electromyographic study of sternocleidomastoid and scalene muscles in tetraplegic subjects during respiration. Int Disabil Stud 1991;13:46-9. 66. Donovan WH, Dwyer AP. An update on the early management of traumatic paraplegia (nonoperative and operative management). Clin Orthop Relat Res 1984:12-21. 67. Houtman S, Oeseburg B, Hopman MT. Blood volume and hemoglobin after spinal cord injury. Am J Phys Med Rehabil 2000;79:260-5. 68. Brown R, DiMarco AF, Hoit JD, Garshick E. Respiratory dysfunction and management in spinal cord injury. Respiratory care 2006;51:853-68;discussion 69-70. 69. Uijl SG, Houtman S, Folgering HT, Hopman MT. Training of the respiratory muscles in individuals with tetraplegia. Spinal Cord 1999;37:575-9. 70. Goldman JM, Rose LS, Morgan MD, Denison DM. Measurement of abdominal wall compliance in normal subjects and tetraplegic patients. Thorax 1986;41:513-8. 71. Gandevia SC, McKenzie DK. Human diaphragmatic EMG: changes with lung volume and posture during supramaximal phrenic stimulation. J Appl Physiol 1986;60:1420-8. 72. Lin KH, Wu HD, Chang CW, Wang TG, Wang YH. Ventilatory and mouth occlusion pressure responses to hypercapnia in chronic tetraplegia. Arch Phys Med Rehabil 1998;79:795-9. 73. Gounden P. Static respiratory pressures in patients with post-traumatic tetraplegia. Spinal Cord 1997;35:43-7. 74. Fujiwara T, Hara Y, Chino N. Expiratory function in complete tetraplegics: study of spirometry, maximal expiratory pressure, and muscle activity of pectoralis major and latissimus dorsi muscles. Am J Phys Med Rehabil 1999;78:464-9. 75. Baydur A, Adkins RH, Milic-Emili J. Lung mechanics in individuals with spinal cord injury: effects of injury level and posture. J Appl Physiol 2001;90:405-11. 76. McMichan JC, Michel L, Westbrook PR. Pulmonary dysfunction following traumatic quadriplegia. Recognition, prevention, and treatment. JAMA 1980;243:528-31. 77. Estenne M, Knoop C, Vanvaerenbergh J, Heilporn A, De Troyer A. The effect of pectoralis muscle training in tetraplegic subjects. Am Rev Respir Dis 1989;139:1218-22. 78. Siafakas NM, Morris AJ, Green M. Thoracoabdominal mechanics during relaxed and forced vital capacity. J Appl Physiol 1979;47:38-42. 79. Altarifi A, Badr MS, Tzelepis GE. Maximal dynamic expiratory pressures with fast and slow inspirations. European journal of applied physiology 2003;89:74-8. 80. Campbell EJM, Agostoni E, Davis JN. Respiratory Muscles. Mechanics and Neural Control. Philadelphia: Sounders; 1970. 81. Estenne M, Gorini M. Action of the diaphragm during cough in tetraplegic subjects. J Appl Physiol 1992;72:1074-80. 82. Van Houtte S, Vanlandewijck Y, Gosselink R. Respiratory muscle training in persons with spinal cord injury: a systematic review. Respir Med 2006;100:1886-95. 83. Gonzalez-Bermejo J, Perrin C, Janssens JP, Pepin JL, Mroue G, Leger P et al. Proposal for a systematic analysis of polygraphy or polysomnography for identifying and scoring abnormal events occurring during non-invasive ventilation. Thorax. 84. Aliverti A. Chest Wall Mechanics in COPD. Curr Respir Med Rev 2008;4:240-9. 85. Hodges PW, Gandevia SC. Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol 2000;89:967-76. 86. Griffiths RI, Shadwick RE, Berger PJ. Functional importance of a highly elastic ligament on the mammalian diaphragm. Proc Biol Sci 1992;249:199-204. 87. Barakat S, Michele G, George P, Nicole V, Guy A. Outpatient pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2008;3:155-62. 88. Alvarez SE, Peterson M, Lunsford BR. Respiratory treatment of the adult patient with spinal cord injury. Physical therapy 1981;61:1737-45. 89. Luce JM, Culver BH. Respiratory muscle function in health and disease. Chest 1982;81:82-90. 90. McKeough ZJ, Alison JA, Bye PT. Arm positioning alters lung volumes in subjects with COPD and healthy subjects. Aust J Physiother 2003;49:133-7. 91. Couser JI, Jr., Martinez FJ, Celli BR. Respiratory response and ventilatory muscle recruitment during arm elevation in normal subjects. Chest 1992;101:336-40. 92. Morgan MD, De Troyer A. The individuality of chest wall motion in tetraplegia. Bull Eur Physiopathol Respir 1984;20:547-52. 93. Morgan MD, Gourlay AR, Silver JR, Williams SJ, Denison DM. Contribution of the rib cage to breathing in tetraplegia. Thorax 1985;40:613-7. 94. Estenne M, De Troyer A. Mechanism of the postural dependence of vital capacity in tetraplegic subjects. Am Rev Respir Dis 1987;135:367-71. 95. Wang HK, Lu TW, Liing RJ, Shih TTF, Chen SC, Lin KH. Relations between chest wall motion and diaphragmatic excursion of healthy adults in supine position. J Formos Med Assoc 2009;108. 96. Takazakura R, Takahashi M, Nitta N, Murata K. Diaphragmatic motion in the sitting and supine positions: Healthy subject study using a vertically open magnetic resonance system. J Magn Reson Imaging 2004;19:605-9. 97. Estenne M, Yernault JC, De Troyer A. Rib cage and diaphragm-abdomen compliance in humans: effects of age and posture. J Appl Physiol 1985;59:1842-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37173 | - |
dc.description.abstract | 良好功能的胸廓正常動作,對於日常生活功能及存活是很重要的。許多臨床問題容易造成不正常胸廓動作,這些問題包括:脊髓損傷、中風、頭部外傷、肺部及心臟疾病等。臨床上,物理治療師對於脊髓損傷患者之呼吸訓練,包括:坐姿及躺姿時的呼吸訓練,以及利用上肢活動來增加肺活量,然而,以往的相關研究因為受限於所使用的測量工具,無法提供胸廓活動完整的三度空間的資訊(three dimensional information),且無法探知內部橫膈膜的動作,因此本研究主要目的是:(1)建立三度空間光電動作分析系統(Vicon250,牛津,英國)和超音波攝影(Sonosite Inc., 華盛頓, 美國)之信度與效度,以及胸廓動作三度空間模式;(2)於仰臥姿勢下且無上肢動作時,比較健康人與脊髓損傷患者胸廓三度空間動作; (3) 於仰臥姿勢下且配合上肢動作時,比較健康人與脊髓損傷患者胸廓三度空間動作(4)於坐姿下且無上肢動作時,比較健康人與脊髓損傷患者胸廓三度空間動作。方法:根據實驗目的,本研究分為三個實驗,受試者總共分三組包括健康組、胸髓損傷組、及頸髓損傷組。脊髓損傷患者的收案條件為完全髓損傷患者、男性、年齡在18-65歲、受傷六個月以上、受試期間無感染或發燒症狀、上肢可以在仰臥姿勢下執行肩關節外展的動作。實驗一為建立三度空間胸廓活動推估肺活量與由超音波測得知橫膈膜位移之關係,而部分受試者接受同時螢光攝影(fluoroscopy)及呼吸測量儀(spirometer),並建立超音波測量及螢光攝影測量之橫膈膜位移的關係,建立超音波測得橫膈膜位移之指標;實驗二主要為比較健康受測者與頸椎胸髓損傷患者,於躺姿下無上肢外展動作對胸廓動作之影響;實驗三主要為比較健康受測者與頸椎胸髓損傷患者,於躺姿下有上肢外展動作對胸廓動作之影響;實驗四為比較正常人與頸髓胸椎損傷患者於坐姿及臥姿下對於胸廓動作之影響。本研究方法除臨床量表評估外,要求受測者嘴巴含住呼吸測量儀之吹管做深呼吸,藉此測得肺活量,並同時在身體前側貼47顆反光球,由光電動作分析系統測量胸廓動作,且使用超音波測量右側及左側橫膈膜之移動。呼吸肌用表面肌電圖記錄胸鎖乳突肌、肋間肌與橫膈膜之肌肉活動。分析方法:使用Matlab 7.01及SPSS11.0做不同情況之資料分析。結果:(1) 由超音波測得之橫膈膜位移與螢光攝影測得之橫膈膜位移的相關性達0.914,而且,由超音波測得之橫膈膜位移與腹部變化量有顯著相關。(2) 躺姿下,頸椎脊髓損傷患者主要以腹部移動來完成吸氣及吐氣的動作,對於胸椎脊髓損傷患而言,發現不管在最大吸氣或是吐氣,胸椎患者之下胸廓的移動比正常人少。(3) 上肢外展動作對於頸椎脊髓損傷患者而言,雖然整體的胸廓動作及肺活量並未增加,但增加了上胸廓的動作伴隨著減少腹部的動作,並增加呼吸肌的徵召。(4) 從躺姿改變到坐姿,對於胸椎第四節受傷以上的脊髓損傷患者而言,會讓肺活量降低,使腹部動作變小,但增加呼吸肌的徵召。結論:對於脊髓損傷患者而言,可用腹部動作的大小,來評估橫膈膜位移的程度。在躺姿下執行上肢外展的動作,確實可增加上胸廓的活動度。然而,在坐姿下,易導致脊髓損傷患者腹部及橫膈膜的動作下降,使肺活量低於躺姿。以上結果可提供臨床復健的參考。 | zh_TW |
dc.description.abstract | Normal chest wall motion is important for good daily function and survival rate. Many clinical problems result in abnormal chest wall motion, including spinal cord injury, stroke, pulmonary diseases, and heart diseases etc. In clinics, a lot of respiratory training methods are used to improve respiratory function of spinal cord injured patients, including respiratory training in sitting and supine posture, with or without arm motion to increase lung volume. However, previous studies about three-dimensional (3D) information of chest wall motion and diaphragmatic excursion are limited, so we will use the optoelectronic plethysmography (OEP) system combining with ultrasonography (USD) to measure chest wall motion in this study. The purposes of these studies are as following: (1) to construct the validity and reliability of chest wall motion by OEP system (Vicon 250, Oxford, UK) and USD system (Sonosite Inc., Washington, USA) and establish 3D chest wall motion model, (2) to compare the chest wall motion between healthy subjects and individuals with spinal cord injury in supine, (3) to compare the chest wall motion with and without arms abduction between healthy subjects and individuals with spinal cord injury in supine, and (4) to compare the chest wall motion between healthy subjects and patients with spinal cord injury in sitting and in supine posture. Methods: According to the purposes of this study, there are there experimental designs. The participants include healthy group, paraplegic group, and tetraplegic group. The inclusion criteria of individuals with spinal cord injury are complete cervical or thoracic cord lesion, male, with age ranging from 18 to 65 years old, at least 6 months since injury, without any infection or inflammatory symptoms during the experimental period, and being able to abduct his arms in supine position. The experiment I is to establish relationship between 3D chest wall motion model and diaphragmatic excursion measured by USD. The index of diaphragmatic excursion is established by evaluation of relation between the diaphragmatic excursion measured by USD and measured by fluoroscopy. The experiment II is to compare chest wall motion in supine posture between healthy able-bodied subjects and individuals with spinal cord injury. The experiment III is to compare chest wall motion in supine posture with and without arms abduction movements between healthy subjects and individuals with spinal cord injury. The experiment IV is to compare chest wall motion between healthy subjects and individuals with spinal cord injury in sitting and supine posture. After the clinical assessments, the subject is asked to breathe via mouth piece of spirometer to measure the vital capacity. Forty-seven passive reflective markers are applied on anterior side of trunk to measure chest wall motion by OEP system. The USD is applied on the right side of the 10th intercostal space in the midclavicular line with slightly upward tilt to subjects’ head to measure diaphragmatic excursion. After the starting signals, all equipments start synchronously while the subject is asked to perform breathing. The surface electromyography (EMG) is used to record the activities of respiratory muscles including Sternocleidomastoid and intercostals combined with diaphragm (costal diaphragm). Data analysis: Matlab 7.01 and SPSS11.0 are used to analyze the data. Results: (1) The relation between diaphragmatic excursion measured by USD and fluoroscopy was good (Pearson correlation coefficient=.914), and the relationship between the diaphragmatic excursion and the abdominal volume changes was good. (2) Comparing to the controls, the individuals with paraplegia had decreased motion of the lower thorax during both maximal inspiration and expiration. (3) Comparing to the arms resting condition, the individuals with tetraplegia had increased movement of the upper thorax and decreased movement of the abdomen with larger recruitment of respiratory muscle activities under arms abduction condition, although the volume change of total chest wall did not change. (4) Comparing to the lying posture, the individuals with lesion level above T4 had decreased lung volume with decreased movement of abdomen and increased recruitment of respiratory muscle activities in seated posture. Conclusion: For individuals with spinal cord injury, the motion of abdomen can be used to assess the excursion of the diaphragm. In addition, the arms abduction during inspiration was a good intervention to increase the movement of the upper thorax. However, the vital capacity would decrease with the reduced the movement of abdomen for individuals with spinal cord injury in seated posture. The above findings would provide the guideline for clinical rehabilitation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:20:36Z (GMT). No. of bitstreams: 1 ntu-100-D93428004-1.pdf: 2601433 bytes, checksum: b142275e15e4b2f032d5f2178c23c3cc (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iv Acknowledgements vi Table of Contents vii List of Tables xii List of Figures xiv Chapter 1 Introduction 1 1.1. Spinal cord injury and Chest wall motion 1 1.2. Geometric Models of Chest Wall Motion 2 1.2.1. Two-Compartment Model 2 1.2.2. Three-Compartment Model 2 1.3. Approaches to study chest wall motion 3 1.3.1. Two-Dimensional Measurements of Chest Wall Motion 3 1.3.2. Three-Dimensional Measurements of Chest Wall Motion 4 1.4. Chest wall motion in healthy subjects 6 1.4.1. Two dimensional information about Chest wall motion 7 1.4.2. Diaphragmatic Excursion in Healthy Subjects 8 1.4.3. Three-dimensional information about Coordination of Chest Wall Motion 8 1.5. Chest wall motion in SCI patients 11 1.5.1. Two-dimensional information about Chest Wall Motion in SCI patients 11 1.5.2. Diaphragmatic Excursion in SCI Patients 12 1.5.3. Three-dimensional information about Chest Wall Motion in SCI patients 13 1.6. Electromyography of Respiratory Muscles 14 1.6.1. EMG of Respiratory Muscles in Normal subjects 14 1.6.2. EMG of Respiratory Muscles in SCI patients 16 1.7. Limitation of previous studies 17 1.8. Aims of this dissertation 18 Chapter 2 Experimental Protocol and Methods 20 2.1. Participants 20 2.1.1. Able-bodied control subjects 20 2.1.2. SCI Subjects 20 2.2. Equipments 21 2.2.1. Optoelectronic plethysmography 21 2.2.2. Ultrasonography 22 2.2.3. Fluoroscopy 23 2.2.4. Electromyography 24 2.2.5. Spirometer 25 2.3. Experiments 26 2.4. Kinematic Analysis 28 2.4.1. Coordinate Systems 29 2.5. Data Analysis 30 2.5.1. Kinematic data 30 2.5.2. Diaphragmatic excursion 33 2.5.3. Muscle activity 34 2.5.4. Statistical Analysis 34 Chapter 3 Comparison of Diaphragm Excursion between Measurements of Ultrasonography and Fluoroscopy 35 3.1. Materials and Methods 35 3.1.1. Participants 35 3.1.2. Test Activities 35 3.1.3. Statistical Analysis 36 3.2. Results 36 3.3. Conclusion 38 Chapter 4 Relations between Chest Wall Motion and Diaphragmatic Excursion of Healthy Adults in Supine Position 39 4.1. Participants 39 4.2. Data Analysis 40 4.3. Results 41 4.3.1. Linear regression analysis/ Multiple linear regression analysis 41 4.4. Discussion 44 4.4.1. Impacts of the correlations between compartments and DE 44 4.4.2. Three compartment model by OEP 45 4.4.3. Spirometer and Body Plethysmography vs. OEP 45 4.4.4. Methodology of US 46 4.4.5. Limitations of this study 47 4.4.6. Clinical Application 49 4.5. Conclusion 49 Chapter 5 Relations between Chest Wall Motion and Diaphragmatic Excursion of Individuals with Spinal Cord Injury in Supine Posture 50 5.1. Participants 50 5.2. Data analysis 52 5.3. Results 53 5.3.1. Deep Inspiration 53 5.3.2. Deep Expiration 57 5.4. Discussion 61 5.4.1. The relation between diaphragmatic excursion and volume changes of the three compartments during deep inspiration 61 5.4.2. The relation between diaphragmatic excursion and volume changes of the three compartments during deep expiration 63 5.5. Conclusion 64 Chapter 6 Chest Wall Kinematics and Respiratory Muscle Action during Supine Breathing in Individuals with and without Tetraplegia 65 6.1. Materials and Methods 67 6.1.1. Participants 67 6.2. Data Analysis 67 6.2.1. Statistical Analysis 68 6.3. Results 68 6.3.1. Inspiration 68 6.3.2. Expiration 77 6.4. Discussion 84 6.4.1. Inspiration 84 6.4.2. Expiration 88 6.5. Conclusion 91 Chapter 7 Chest Wall Kinematics and Respiratory muscle Action during Supine Breathing in Individuals with and without Paraplegia 92 7.1. Materials and Methods 93 7.1.1. Participants 93 7.2. Data Analysis 94 7.2.1. Statistical Analysis 94 7.3. Results 95 7.3.1. Inspiration 95 7.3.2. Expiration 102 7.4. Discussion 111 7.4.1. Inspiration 111 7.4.2. Expiration 112 7.5. Conclusion 115 Chapter 8 Arm Abduction Effect on Chest Wall Motion in Subjects with and without Cervical Cord Injury 116 8.1. Participants 117 8.2. Experimental protocol 117 8.3. Data Analysis 118 8.3.1. Statistical Analysis 119 8.4. Results 120 8.5. Discussion 127 8.6. Conclusion 129 Chapter 9 Postural Effect on Chest Wall Motion in Individuals with and without Spinal Cord Injury 130 9.1. Participants 131 9.2. Data analysis 131 9.2.1. Statistical analysis 132 9.3. Results 132 9.4. Discussion 139 9.5. Conclusion 142 Chapter 10 Conclusions and Suggestions 143 10.1. Conclusions 144 10.1.1. The Relations between Chest wall Motion and Diaphragmatic Excursion of Healthy Adults in Supine Position 144 10.1.2. The Relations between Chest wall Motion and Diaphragmatic Excursion of Individuals with Spinal Cord Injury in Supine posture 144 10.1.3. Chest Wall Kinematics and Respiratory Muscle Action during Supine Breathing in Individuals with and without Tetraplegia 145 10.1.4. Chest Wall Kinematics and Respiratory Muscle Action during Supine Breathing in Individuals with and without Paraplrgia 146 10.1.5. Arm Abduction Effect on Chest Wall Motion in Subjects with and without Spinal cord injury 147 10.1.6. Postural Effect on Chest Wall Motion in Individuals with and without Spinal Cord Injury 147 10.2. Study Limitations 148 10.3. Suggestions for Further Studies 148 10.3.1. Chest Wall Coordination for Individuals with Spinal Cord Injury 148 10.3.2. The effect of exercise intervention on Chest Wall Motion in Individuals with Spinal Cord Injury 149 10.4. Clinical Applications 149 Appendix A. Standard neurological classification of spinal cord injury 150 Appendix B. The method to compute the tetrahedron 151 Publications 152 References 154 | |
dc.language.iso | en | |
dc.title | 脊髓損傷患者於不同情況下之胸廓三度空間動作分析 | zh_TW |
dc.title | Three-Dimensional Motion Analysis of Chest Wall in Spinal Cord Injured Patients Under Different Conditions | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 呂東武(Tung-Wu Lu),高毓儒(Yu-Ru Kou),王興國(Hsing-Kuo Wang),鄭宏志(Henrich Cheng) | |
dc.subject.keyword | 胸廓動作分析,脊髓損傷,橫膈膜位移, | zh_TW |
dc.subject.keyword | Chest wall kinematics,spinal cord injury,diaphragmatic excursion, | en |
dc.relation.page | 161 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-11 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。