Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37149
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝旭亮
dc.contributor.authorYen-Chang Chiouen
dc.contributor.author邱彥璋zh_TW
dc.date.accessioned2021-06-13T15:20:07Z-
dc.date.available2010-08-11
dc.date.copyright2008-08-11
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citationAchard, P., Liao, L., Jiang, C., Desnos, T., Bartlett, J., Fu, X., and Harberd, N.P. (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiol 143, 1163-1172.
Ahmad, M., and Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162-166.
Ahmad, M., Jarillo, J.A., and Cashmore, A.R. (1998a). Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10, 197-207.
Ahmad, M., Jarillo, J.A., Smirnova, O., and Cashmore, A.R. (1998b). The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1, 939-948.
Al-Sady, B., Ni, W., Kircher, S., Schafer, E., and Quail, P.H. (2006). Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23, 439-446.
Alabadi, D., Gil, J., Blazquez, M.A., and Garcia-Martinez, J.L. (2004). Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134, 1050-1057.
Alabadi, D., Gallego-Bartolome, J., Orlando, L., Garcia-Carcel, L., Rubio, V., Martinez, C., Frigerio, M., Iglesias-Pedraz, J.M., Espinosa, A., Deng, X.W., and Blazquez, M.A. (2008). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53, 324-335.
Ang, L.H., and Deng, X.W. (1994). Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6, 613-628.
Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X.W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1, 213-222.
Ballesteros, M.L., Bolle, C., Lois, L.M., Moore, J.M., Vielle-Calzada, J.P., Grossniklaus, U., and Chua, N.H. (2001). LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev 15, 2613-2625.
Bolle, C., Koncz, C., and Chua, N.H. (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14, 1269-1278.
Bou-Torrent, J., Roig-Villanova, I., and Martinez-Garcia, J.F. (2008). Light signaling: back to space. Trends Plant Sci 13, 108-114.
Briggs, W.R., Beck, C.F., Cashmore, A.R., Christie, J.M., Hughes, J., Jarillo, J.A., Kagawa, T., Kanegae, H., Liscum, E., Nagatani, A., Okada, K., Salomon, M., Rudiger, W., Sakai, T., Takano, M., Wada, M., and Watson, J.C. (2001). The phototropin family of photoreceptors. Plant Cell 13, 993-997.
Buche, C., Poppe, C., Schafer, E., and Kretsch, T. (2000). eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell 12, 547-558.
Cashmore, A.R., Jarillo, J.A., Wu, Y.J., and Liu, D. (1999). Cryptochromes: blue light receptors for plants and animals. Science 284, 760-765.
Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12, 514-521.
Chao, L.Y. (2008). Functional studies of FIN219 and PHYA interaction in Arabidopsis thaliana. Master thesis.
Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W., and Wei, N. (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673-683.
Chen, I.-C., Lee, S.-C., Pan, S.-M., and Hsieh, H.-L. (2007a). GASA4, a GA-stimulated gene, participates in light signaling in Arabidopsis. Plant Science 172, 1062-1071.
Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., and Hsieh, H.L. (2007b). Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol 143, 1189-1202.
Cherry, J.R., Hondred, D., Walker, J.M., Keller, J.M., Hershey, H.P., and Vierstra, R.D. (1993). Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell 5, 565-575.
Cho, D.S., Hong, S.H., Nam, H.G., and Soh, M.S. (2003). FIN5 positively regulates far-red light responses in Arabidopsis thaliana. Plant Cell Physiol 44, 565-572.
Choi, G., Yi, H., Lee, J., Kwon, Y.K., Soh, M.S., Shin, B., Luka, Z., Hahn, T.R., and Song, P.S. (1999). Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610-613.
Colon-Carmona, A., Chen, D.L., Yeh, K.C., and Abel, S. (2000). Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol 124, 1728-1738.
Deng, X.W., and Quail, P.H. (1999). Signalling in light-controlled development. Semin Cell Dev Biol 10, 121-129.
Desnos, T., Puente, P., Whitelam, G.C., and Harberd, N.P. (2001). FHY1: a phytochrome A-specific signal transducer. Genes Dev 15, 2980-2990.
Duek, P.D., and Fankhauser, C. (2003). HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling. Plant J 34, 827-836.
Edgerton, M.D., and Jones, A.M. (1992). Localization of protein-protein interactions between subunits of phytochrome. Plant Cell 4, 161-171.
Fairchild, C.D., Schumaker, M.A., and Quail, P.H. (2000). HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14, 2377-2391.
Fankhauser, C. (2000). Phytochromes as light-modulated protein kinases. Semin Cell Dev Biol 11, 467-473.
Fankhauser, C., and Chory, J. (2000). RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol 124, 39-45.
Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D., and Chory, J. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539-1541.
Fu, T.Y. (2008). Functional studies of Arabidopsis FIN219 in cross-talks between blue light and far-red light signaling. Master thesis.
Giovani, B., Byrdin, M., Ahmad, M., and Brettel, K. (2003). Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Biol 10, 489-490.
Guilfoyle, T., Hagen, G., Ulmasov, T., and Murfett, J. (1998b). How does auxin turn on genes? Plant Physiol 118, 341-347.
Guilfoyle, T.J., Ulmasov, T., and Hagen, G. (1998a). The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54, 619-627.
Guo, H., Yang, H., Mockler, T.C., and Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360-1363.
Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291, 487-490.
Gyula, P., Schafer, E., and Nagy, F. (2003). Light perception and signalling in higher plants. Curr Opin Plant Biol 6, 446-452.
Hagen, G., and Guilfoyle, T. (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49, 373-385.
Hagen, G., Martin, G., Li, Y., and Guilfoyle, T.J. (1991). Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17, 567-579.
Hare, P.D., Moller, S.G., Huang, L.F., and Chua, N.H. (2003). LAF3, a novel factor required for normal phytochrome A signaling. Plant Physiol 133, 1592-1604.
Hiltbrunner, A., Tscheuschler, A., Viczian, A., Kunkel, T., Kircher, S., and Schafer, E. (2006). FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol 47, 1023-1034.
Hiltbrunner, A., Viczian, A., Bury, E., Tscheuschler, A., Kircher, S., Toth, R., Honsberger, A., Nagy, F., Fankhauser, C., and Schafer, E. (2005). Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15, 2125-2130.
Hoecker, U., Xu, Y., and Quail, P.H. (1998). SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10, 19-33.
Hoecker, U., Tepperman, J.M., and Quail, P.H. (1999). SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284, 496-499.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14, 1958-1970.
Huala, E., Oeller, P.W., Liscum, E., Han, I.S., Larsen, E., and Briggs, W.R. (1997). Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278, 2120-2123.
Huang, C.H. (2005). Inverstigation of functional relationship between FIN219 and photomorphogenic mutants in Arabidopsis. Master thesis.
Huq, E., Al-Sady, B., and Quail, P.H. (2003). Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J 35, 660-664.
Imaizumi, T., Kanegae, T., and Wada, M. (2000). Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell 12, 81-96.
Inada, S., Ohgishi, M., Mayama, T., Okada, K., and Sakai, T. (2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887-896.
Jang, D.Y. (2005). Investigation of the functional relationship between FIN219 and FHY1 genes. Master thesis.
Jiao, Y., Lau, O.S., and Deng, X.W. (2007). Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8, 217-230.
Jiao, Y., Ma, L., Strickland, E., and Deng, X.W. (2005). Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17, 3239-3256.
Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., and Wada, M. (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138-2141.
Kanegae, T., and Wada, M. (1998). Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantum capillus-veneris. Mol Gen Genet 259, 345-353.
Kang, X., and Ni, M. (2006). Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell 18, 921-934.
Kang, X., Chong, J., and Ni, M. (2005). HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses. Plant Cell 17, 822-835.
Kay, C.W., Schleicher, E., Kuppig, A., Hofner, H., Rudiger, W., Schleicher, M., Fischer, M., Bacher, A., Weber, S., and Richter, G. (2003). Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin. J Biol Chem 278, 10973-10982.
Kendrick, R.E., and Kronenberg, G.H.M. (1986). Photomorphogenesis in plants. (Dordrecht [Netherlands] ; BostonNorwell, MA, USA: M. Nijhoff ;Distributors for the U.S. and Canada).
Kim, J., Yi, H., Choi, G., Shin, B., and Song, P.S. (2003). Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15, 2399-2407.
Kim, J.I., Shen, Y., Han, Y.J., Park, J.E., Kirchenbauer, D., Soh, M.S., Nagy, F., Schafer, E., and Song, P.S. (2004). Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell 16, 2629-2640.
Kimura, M., and Kagawa, T. (2006). Phototropin and light-signaling in phototropism. Curr Opin Plant Biol 9, 503-508.
Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki, K. (2001). Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656-660.
Kinoshita, T., Emi, T., Tominaga, M., Sakamoto, K., Shigenaga, A., Doi, M., and Shimazaki, K. (2003). Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol 133, 1453-1463.
Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schafer, E., and Nagy, F. (1999). Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11, 1445-1456.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229, 57-66.
Kunkel, T., Tomizawa, K., Kern, R., Furuya, M., Chua, N.H., and Schafer, E. (1993). In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Eur J Biochem 215, 587-594.
Lapko, V.N., Jiang, X.Y., Smith, D.L., and Song, P.S. (1999). Mass spectrometric characterization of oat phytochrome A: isoforms and posttranslational modifications. Protein Sci 8, 1032-1044.
Lariguet, P., Boccalandro, H.E., Alonso, J.M., Ecker, J.R., Chory, J., Casal, J.J., and Fankhauser, C. (2003). A growth regulatory loop that provides homeostasis to phytochrome a signaling. Plant Cell 15, 2966-2978.
Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749.
Leivar, P., Monte, E., Al-Sady, B., Carle, C., Storer, A., Alonso, J.M., Ecker, J.R., and Quail, P.H. (2008). The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20, 337-352.
Lin, C. (2000b). Plant blue-light receptors. Trends Plant Sci 5, 337-342.
Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., and Cashmore, A.R. (1998). Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A 95, 2686-2690.
Liscum, E., and Briggs, W.R. (1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7, 473-485.
Lissemore, J.L., and Quail, P.H. (1988). Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa. Mol Cell Biol 8, 4840-4850.
Liu, M.J. (2006). Studies of the involvement of glutathione s-transferases in light signal transduction in Arabidopsis thaliana. Master thesis.
Ma, L., Chen, C., Liu, X., Jiao, Y., Su, N., Li, L., Wang, X., Cao, M., Sun, N., Zhang, X., Bao, J., Li, J., Pedersen, S., Bolund, L., Zhao, H., Yuan, L., Wong, G.K., Wang, J., and Deng, X.W. (2005). A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 15, 1274-1283.
Mao, J., Zhang, Y.C., Sang, Y., Li, Q.H., and Yang, H.Q. (2005). From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A 102, 12270-12275.
Martinez-Garcia, J.F., Huq, E., and Quail, P.H. (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science 288, 859-863.
Matsushita, T., Mochizuki, N., and Nagatani, A. (2003). Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424, 571-574.
McNellis, T.W., and Deng, X.W. (1995). Light control of seedling morphogenetic pattern. Plant Cell 7, 1749-1761.
Mockler, T.C., Guo, H., Yang, H., Duong, H., and Lin, C. (1999). Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073-2082.
Moller, S.G., Kim, Y.S., Kunkel, T., and Chua, N.H. (2003). PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell 15, 1111-1119.
Monte, E., Tepperman, J.M., Al-Sady, B., Kaczorowski, K.A., Alonso, J.M., Ecker, J.R., Li, X., Zhang, Y., and Quail, P.H. (2004). The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci U S A 101, 16091-16098.
Montgomery, B.L., and Lagarias, J.C. (2002). Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci 7, 357-366.
Motchoulski, A., and Liscum, E. (1999). Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961-964.
Nagatani, A. (2004). Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol 7, 708-711.
Nakasako, M., Wada, M., Tokutomi, S., Yamamoto, K.T., Sakai, J., Kataoka, M., Tokunaga, F., and Furuya, M. (1990). Quaternary Structure of PEA Phytochrome I Dimer Studied With Small-Angle X-ray Scattering and Rotary-shadowing Electron Microscopy. Photochemistry and Photobiology 52, 3-12.
Ni, M., Tepperman, J.M., and Quail, P.H. (1998). PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657-667.
Ninu, L., Ahmad, M., Miarelli, C., Cashmore, A.R., and Giuliano, G. (1999). Cryptochrome 1 controls tomato development in response to blue light. Plant J 18, 551-556.
Osterlund, M.T., Wei, N., and Deng, X.W. (2000a). The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol 124, 1520-1524.
Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000b). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.
Quail, P.H. (2002). Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3, 85-93.
Quail, P.H. (2007). Phytochrome-regulated Gene Expression. Journal of Integrative Plant Biology 49, 11-20.
Rosler, J., Klein, I., and Zeidler, M. (2007). Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci U S A 104, 10737-10742.
Ryu, J.S., Kim, J.I., Kunkel, T., Kim, B.C., Cho, D.S., Hong, S.H., Kim, S.H., Fernandez, A.P., Kim, Y., Alonso, J.M., Ecker, J.R., Nagy, F., Lim, P.O., Song, P.S., Schafer, E., and Nam, H.G. (2005). Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell 120, 395-406.
Sakai, T., Wada, T., Ishiguro, S., and Okada, K. (2000). RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225-236.
Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M., and Okada, K. (2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98, 6969-6974.
Sakamoto, K., and Nagatani, A. (1996). Nuclear localization activity of phytochrome B. Plant J 10, 859-868.
Sancar, A. (1994). Structure and function of DNA photolyase. Biochemistry 33, 2-9.
Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103, 2203-2237.
Sang, Y., Li, Q.H., Rubio, V., Zhang, Y.C., Mao, J., Deng, X.W., and Yang, H.Q. (2005). N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17, 1569-1584.
Schepens, I., Duek, P., and Fankhauser, C. (2004). Phytochrome-mediated light signalling in Arabidopsis. Curr Opin Plant Biol 7, 564-569.
Seo, H.S., Watanabe, E., Tokutomi, S., Nagatani, A., and Chua, N.H. (2004). Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 18, 617-622.
Shalitin, D., Yu, X., Maymon, M., Mockler, T., and Lin, C. (2003). Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15, 2421-2429.
Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C., and Lin, C. (2002). Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417, 763-767.
Sheen, J. (2001). Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127, 1466-1475.
Shen, Y., Khanna, R., Carle, C.M., and Quail, P.H. (2007). Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol 145, 1043-1051.
Shen, Y., Feng, S., Ma, L., Lin, R., Qu, L.J., Chen, Z., Wang, H., and Deng, X.W. (2005). Arabidopsis FHY1 protein stability is regulated by light via phytochrome A and 26S proteasome. Plant Physiol 139, 1234-1243.
Shin, J., Park, E., and Choi, G. (2007). PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49, 981-994.
Small, G.D., Min, B., and Lefebvre, P.A. (1995). Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family. Plant Mol Biol 28, 443-454.
Soh, M.S., Kim, Y.M., Han, S.J., and Song, P.S. (2000). REP1, a basic helix-loop-helix protein, is required for a branch pathway of phytochrome A signaling in arabidopsis. Plant Cell 12, 2061-2074.
Soh, M.S., Hong, S.H., Hanzawa, H., Furuya, M., and Nam, H.G. (1998). Genetic identification of FIN2, a far red light-specific signaling component of Arabidopsis thaliana. Plant J 16, 411-419.
Spalding, E.P. (2003). Light signaling. Plant Physiol 133, 1417-1419.
Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117-2127.
Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405-1415.
Sullivan, J.A., and Deng, X.W. (2003). From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol 260, 289-297.
Taiz, L., and Zeiger, E. (2002). Plant physiology. (Sunderland, Mass.: Sinauer Associates).
Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., and Quail, P.H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 98, 9437-9442.
Tepperman, J.M., Hudson, M.E., Khanna, R., Zhu, T., Chang, S.H., Wang, X., and Quail, P.H. (2004). Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38, 725-739.
Torii, K.U., McNellis, T.W., and Deng, X.W. (1998). Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. EMBO J 17, 5577-5587.
Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006.
Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y., and Deng, X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154-158.
Wang, Z.Y., and Tobin, E.M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217.
Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., and Harberd, N.P. (1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757-768.
Yamaguchi, R., Nakamura, M., Mochizuki, N., Kay, S.A., and Nagatani, A. (1999). Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145, 437-445.
Yang, H.Q., Tang, R.H., and Cashmore, A.R. (2001). The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13, 2573-2587.
Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., and Cashmore, A.R. (2000). The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103, 815-827.
Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H. (2005). Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17, 804-821.
Yeh, K.C., and Lagarias, J.C. (1998). Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 95, 13976-13981.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37149-
dc.description.abstract光敏素A是阿拉伯芥細胞中負責接收遠紅光的光接受者,能接收波長介於700-750 nm 區間的光源。在先前的報導中指出,FIN219是參與在光敏素A所引導的遠紅光訊息傳遞路徑中的一個正向傳遞因子,當FIN219此基因突變時,阿拉伯芥的幼苗會對遠紅光產生不敏感的外表型,呈現出一個長下胚軸的外型。然而目前對於光敏素A和FIN219在植物細胞中的調控機制並不清楚。在蛋白質表現的實驗分析中,發現將黑暗中生長的幼苗短暫地以遠紅光照射時,FIN219的蛋白質表現量會受到遠紅光的刺激而大量表現。除此之外,在不同的光敏素A突變株中,FIN219的蛋白質表現量會下降,暗示FIN219會受到光敏素A的正向調控。利用酵母菌雙雜交的方法,顯示光敏素A和FIN219 彼此之間具有交互作用的關係;此交互作用關係也利用體外結合能力測試的方法再次加以證明。另一方面,FIN219能和Pr及Pfr形式的光敏素A結合,而對Pr形式的光敏素A具有較高的結合能力。透過阿拉伯芥的原生質體來觀察FIN219在細胞內的位置,顯示FIN219蛋白質大量地累積在細胞質裡;同時亦可累積在細胞核中。在fin219及光敏素A的雙突變體的外表型分析中,發現在遠紅光生長的環境下,fin219及光敏素A的雙突變植株幼苗的下胚軸長度會比fin219或光敏素A的單一突變植株還要來的長,意味著當植物面對遠紅光的反應時,光敏素A會結合FIN219來調控植株幼苗下胚軸的延長。此外,藉由RT-PCR的分析也顯示出一些受光調控的基因在fin219及光敏素A的雙突變體中,會受到不同差異程度地影響。在藉由轉殖品系的分析中,發現同時具有大量表現FIN219 C端274個氨基酸和大量表現光敏素A的N端的轉殖株,會呈現出對遠紅光不敏感的外表型,暗示FIN219會和光敏素A結合來影響到遠紅光的訊息傳遞。觀察此轉殖雜交品系的開花時間,發現在長日照的環境條件下會有延遲開花的現象。同時,我們也發現在植物細胞中FIN219可能以一個磷酸化蛋白質的形式存在,而去磷酸化之後的FIN219會變得不穩定。然而FIN219是否為光敏素A的受質目前並不清楚。zh_TW
dc.description.abstractPhytochrome A (phyA) is the photoreceptor of far-red light (FR) (700-750nm) in Arabidopsis. Far-red insensitive 219 (FIN219) has been shown to be a positive signal component in phyA-mediated FR signaling pathway, and fin219 mutant exhibits a long hypocotyl phenotype under FR. How phyA regulates FIN219 remains unknown. Protein gel blot analyses indicated that FIN219 protein was induced once exposure to FR from darkness. Besides, FIN219 was decreased in different phyA alleles, indicating that phyA positively regulates FIN219. Yeast-two-hybrid assays revealed that FIN219 can interact with PHYA, and this interaction was further confirmed by in vitro pull-down assay. Moreover, FIN219 can bind with both Pr and Pfr forms of phyA, but with higher affinity with Pr form. Subcellular localization studies in Arabidopsis protoplasts indicated that FIN219 accumulated in the nuclei, in addition to the cytoplasms. In addition, the hypocotyl length of fin219/phyA double mutant was longer than that of fin219 or phyA single mutant under FR, implying that FIN219 and phyA bind together to regulate hypocotyl elongation in response to FR. Furthermore, RT-PCR assays revealed that some light-regulated genes were differentially affected in fin219/phyA. Transgenic seedlings, FIN219-C274/PHYA-N, harboring the overexpression constructs of the C-terminal 274 amino-acid region of FIN219 and the N-terminal domain of PHYA exhibited a hyposensitive phenotype under FR, suggesting that the interaction between FIN219 and phyA affects FR light signaling. This transgenic line FIN219-C/PHYA-N also revealed a delayed- flowering phenotype under long-day condition. As well, we found that FIN219 may exist as a phosphorylated protein in vivo, and the unphosphorylated form of FIN219 is not stable. Whether FIN219 is a substrate of phyA remains to be elucidated.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:20:07Z (GMT). No. of bitstreams: 1
ntu-97-R95b42017-1.pdf: 2735586 bytes, checksum: 915a8da9a64ba2739191540cb8449632 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTABLE OF CONTENTS 1
ABSTRACT 3
ABSTRACT (CHINESE) 5
ABBREVIATION 6
INTRODUCTION 8
Light and Plants 8
Phytochromes 8
Cryptochromes 10
Phototropins 13
Photomorphogenesis 14
Light Signaling Transduction 14
Far-red Insensitive 219 (FIN219) 16
Aim of This Study 18
METHODS 19
Plant Materials and Growth Condition 19
Plasmid Construction 20
Yeast Two-Hybrid Assays 21
Expression and Purification of Recombinant Proteins 21
Pull-Down Assays 22
Western Blotting Assays 22
RT-PCR Analysis 23
Determination of Flowering Time 25
Anthocyanin and Chlorophyll Extraction 25
Plant Protoplasts Isolation 26
RESULTS 28
FIN219 Protein is Up-regulated by Far-red Light 28
The Levels of FIN219 are Decreased in Different phyA Mutant Alleles 28
FIN219 and PHYA Interacts With Each Other 29
FIN219 Has Affinities with Both Pr and Pfr Form of phyA 30
Light-regulated Genes are Differentially Affected in the fin219/phyA Double Mutant 31
FIN219 and PHYA Interaction Affects Photomorphogenic Development in Arabidopsis 33
FIN219 may Exist as a Phosphorylated Protein, and Unphosphorylated Form of FIN219 is not Stable 35
DISCUSSION 36
FIN219 is a Far-red Light Inducible Gene and Positively Regulated by Phytochrome A in Arabidopsis 36
Direct Interaction Between FIN219 and Phytochrome A 38
Light-responsive Gene Expressions and the Relationship Between FIN219 and phyA in Arabidopsis 39
The N terminus of Phytochrome A is Sufficient to Trigger Photomorphogenesis in the Presence of Functional phyA 41
The Subcellular Localization and Posttranslational Modification of FIN219 43
Conclusions 45
FIGURES 46
REFERENCES 70
APPENDIX Ⅰ 80
APPENDIX Ⅱ 81
APPENDIX Ⅲ 82
APPENDIX Ⅳ 83
dc.language.isozh-TW
dc.title阿拉伯芥中FIN219和光敏素A交互作用之研究zh_TW
dc.titleStudies of Interaction Between FIN219 and Phytochrome A in Arabidopsisen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉開溫,張孟基,鄭秋萍,蘇睿智
dc.subject.keyword阿拉伯芥,光敏素A,光訊息傳遞,zh_TW
dc.subject.keywordArabidopsis,phytochrome A,light signaling transduction,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2008-07-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved