請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37125完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Szusien Chen | en |
| dc.contributor.author | 陳思顯 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:19:39Z | - |
| dc.date.available | 2014-01-12 | |
| dc.date.copyright | 2008-07-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | 1. Ayotte DC, Ito K, Tepic S. Direction-dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study. J Orthop Res 2001;19:1073-7.
2. Battie MC, Videman T, Gibbons LE, et al. 1995 Volvo Award in clinical sciences. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine 1995;20:2601-12. 3. Benneker LM, Heini PF, Alini M, et al. 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 2005;30:167-73. 4. Botsford DJ, Esses SI, Ogilvie-Harris DJ. In vivo diurnal variation in intervertebral disc volume and morphology. Spine 1994;19:935-40. 5. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1995;20:1307-14. 6. Callaghan JP, McGill SM. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon) 2001;16:28-37. 7. Chandraraj S, Briggs CA, Opeskin K. Disc herniations in the young and end-plate vascularity. Clin Anat 1998;11:171- 8. Chelberg MK, Banks GM, Geiger DF, et al. Identification of heterogeneous cell populations in normal human intervertebral disc. J Anat 1995;186 ( Pt 1):43-53. 9. Chuang SY, Odono RM, Hedman TP. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clin Biomech (Bristol, Avon) 2007;22:14-20. 10. Eyre DR, Muir H. Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta 1977;492:29-42. 11. Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 2004;37:213-21. 12. Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine 2001;26:889-96. 13. Gu WY, Lai WM, Mow VC. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J Biomech Eng 1998;120:169-80. 14. Hedman TP, Saito H, Vo C, et al. Exogenous cross-linking increases the stability of spinal motion segments. Spine 2006;31:E480-5. 15. Holm S, Maroudas A, Urban JP, et al. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 1981;8:101-19. 16. Holm S, Nachemson A. Nutrition of the intervertebral disc: acute effects of cigarette smoking. An experimental animal study. Ups J Med Sci 1988;93:91-9. 17. http://www.medicalsearchweb.com/herbs/Gardenia. 18. http://www.spineuniverse.com/displayarticle.php/article1267.html. 19. Izambert O, Mitton D, Thourot M, et al. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Eur Spine J 2003;12:562-6. 20. Kalichman L, Hunter DJ. The genetics of intervertebral disc degeneration.Associated genes. Joint Bone Spine 2008. 21. Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res 1986:243-5. 22. Lowe TG, Hashim S, Wilson LA, et al. A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 2004;29:2389-94. 23. Luoma K, Vehmas T, Raininko R, et al. Lumbosacral transitional vertebra: relation to disc degeneration and low back pain. Spine 2004;29:200-5. 24. Maclean JJ, Owen JP, Iatridis JC. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. J Biomech 2007;40:55-63. 25. Malko JA, Hutton WC, Fajman WA. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle. Spine 1999;24:1015-22. 26. McMillan DW, Garbutt G, Adams MA. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 1996;55:880-7. 27. Moore RJ. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 2006;15 Suppl 3:333-7. 28. Nettles DL, Richardson WJ, Setton LA. Integrin expression in cells of the intervertebral disc. J Anat 2004;204:515-20. 29. Oki S, Matsuda Y, Shibata T, et al. Morphologic differences of the vascular buds in the vertebral endplate: scanning electron microscopic study. Spine 1996;21:174-7. 30. Oxland TR, Grant JP, Dvorak MF, et al. Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies. Spine 2003;28:771-7. 31. Pitzen T, Schmitz B, Georg T, et al. Variation of endplate thickness in the cervical spine. Eur Spine J 2004;13:235-40. 32. Pooni JS, Hukins DW, Harris PF, et al. Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg Radiol Anat 1986;8:175-82. 33. Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 2008;8:18-44. 34. Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 2004;29:2654-67. 35. Roberts S, Urban JP, Evans H, et al. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 1996;21:415-20. 36. Roughley PJ, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 2002;30:869-74. 37. Rudert M, Tillmann B. Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods. Ann Anat 1993;175:237-42. 38. Schmitz B, Pitzen T, Beuter T, et al. Regional variations in the thickness of cervical spine endplates as measured by computed tomography. Acta Radiol 2004;45:53-8. 39. Silva MJ, Wang C, Keaveny TM, et al. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 1994;15:409-14. 40. Sung HW, Huang RN, Huang LL, et al. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed 1999;10:63-78. 41. van der Werf M, Lezuo P, Maissen O, et al. Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusive transport. J Anat 2007;211:769-74. 42. Walter R, Miguez PA, Arnold RR, et al. Effects of Natural Cross-Linkers on the Stability of Dentin Collagen and the Inhibition of Root Caries in vitro. Caries Res 2008;42:263-8. 43. Yao H, Gu WY. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach. Biomech Model Mechanobiol 2007;6:63-72. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37125 | - |
| dc.description.abstract | 背景簡介:液體在椎間盤與椎體間的對流,是椎間盤獲取養分以及代謝廢物的方法之一。椎終板是位於椎間盤與椎體之間液體流動的界面。椎間盤的功能好壞與新陳代謝正常與否息息相關。椎間盤內部壓力的改變,驅動液體在椎間盤及椎終板之間流動。然而目前對影響椎終板液體通透性的因子,了解仍然有限。
目的:比較椎終板各區域水流阻力的差異,並探討液體流向、椎間核的存在以及交聯劑的浸泡,對椎終板水流阻力的影響。 材料與方法:使用健康豬胸椎的椎終板,依實驗需求以穴鋸從椎終板各區域取出直徑5mm,長6mm的圓柱作為試樣,試樣總數為125個。以客製化的液壓系統,將1ml食鹽水,以0.0075ml/s的速率,分別從試樣的兩端推進,以模擬液體流進、流出椎間盤的情形。在注射食鹽水的過程中,以壓力感測器量測水流阻力變化。共進行三組實驗。實驗1:比較椎終板前方、後側及中央區域水流阻力的差異。實驗2:保留椎終板中央區域上方的椎間核物質,探討椎間核的存在與否,對水流阻力的影響。實驗3:比較浸泡於梔子素、食鹽水、蒸餾水各一天的椎終板,其兩側水流阻力的差異。實驗後取得液體通過椎終板之壓力值,並進行統計分析。 結果:椎終板的前方、後側及中央區域,液體從椎間盤排出所需要的壓力,皆顯著地大於流入椎間盤所需要的壓力。椎終板中央區域的水流阻力顯著地小於周圍區域的水流阻力。當椎間核存在時,液體流進、流出椎間盤的壓力較高。與未經任何溶液浸泡的試樣比較,梔子素提高了0.98倍的液體流出椎間盤之阻力(P=0.038),以及提高了1.02倍液體的流入椎間盤之阻力 (P=0.089)。 結論:由於椎終板的結構特性,造成液體進、出椎間盤所需要的壓力有顯著的差別。液體經椎終板排出椎間盤所需之壓力大於流入椎間盤所需之壓力。液體經椎終板中央區域進、出椎間盤的阻力較低。當椎間核存在時,液體較難排出椎間盤。梔子素會提高液體經由椎終板流進、出椎間盤所需之壓力。 | zh_TW |
| dc.description.abstract | Objectives. To investigate the effect of regional variation, nucleus material and genipin immersion on the bi-directional fluid flow resistance of healthy vertebral endplate.
Summary of Background Data. The exchange of nutrients and wastes for metabolic process in the intervertebral disc can occur via fluid convection through the endplate. The fluid flow can be driven by pressure gradient between the vertebra and the intervertebral disc. However, the factors that influence the resistance of fluid flow of endplate have not been well studied yet. Methods. 125 plugs (diameter: 5mm, length: 6mm) were harvested form the healthy porcine thoracic endplates with a trephine drill. The customized pumping system was used to inject 1mL saline at a speed of 0.0075ml/s through two ends of each plug, simulating the fluid outflow and inflow of the intervertebral disc. During saline injection, the fluid flow resistance was measured as steady state pressure by a pressure transducer connected to the customized pumping system. Three experimental groups were performed to investigate the effect of regional variation, nucleus material and genipine on the fluid flow resistance, respectively. The plugs were harvested from the anterior (n=18), posterolateral (n=18), and central (n=18) endplate for Protocol 1, from the central endplate without removal of nucleus material (n=18) for Protocol 2, and from the central endplate with 18 plugs soaked in genipin solution, 18 plugs soaked in saline, and 17 plugs soaked in distilled water for 1 day for Protocol 3. Results. The resistance of fluid outflow was significantly greater than that of fluid inflow through every region of the endplate. The lowest resistance of fluid inflow/outflow was in the central endplate. The existence of nucleus material increased fluid flow resistance bi-directionally. In comparison with the plugs without being soaked in any solutions, the resistance of fluid outflow increased by 98% (p=0.038), and the resistance of fluid inflow increased by 102% (p=0.089) for the plugs soaked in genipin solution. Conclusions. The resistance of fluid flow of the endplate is direction-dependent and region-dependent. Genipin can increase the resistance of fluid outflow and inflow of the endplate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:19:39Z (GMT). No. of bitstreams: 1 ntu-97-R95548010-1.pdf: 1999474 bytes, checksum: eb75fe878f5b6eb99253f02de7e7eeea (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 第一章 前言 1 1.1椎間盤 1 1.2椎終板 2 1.3天然交聯劑梔子素 4 1.4研究動機與目的 5 第二章 材料與方法 6 2.1實驗假設 6 2.2實驗原理 6 2.3實驗儀器 7 2.3.1液壓製造裝置 7 2.3.2材料測試機台 8 2.3.3.液壓製造系統 8 2.4試樣準備 10 2.4.1實驗組別 11 2.5實驗流程 13 2.6統計分析方法 15 2.7前導實驗 15 第三章 結果 16 3.1流向的差異 16 3.2椎終板區域之影響 17 3.3椎間核之影響 17 3.4梔子素對椎終板之影響 18 第四章 討論與結論 20 4.1液體進出椎間盤 20 4.2椎終板區域之影響 20 4.3椎間核之影響 20 4.4梔子素對椎終板之影響 21 4.5實驗限制 22 4.6結論 22 4.7未來展望 23 參考文獻 24 附錄A - 液壓製造系統控制及資料擷取系統程式碼 27 附錄B - 實驗原始數據 30 | |
| dc.language.iso | zh-TW | |
| dc.subject | 滲透性 | zh_TW |
| dc.subject | 椎終板 | zh_TW |
| dc.subject | 椎間盤 | zh_TW |
| dc.subject | 梔子素 | zh_TW |
| dc.subject | 新陳代謝 | zh_TW |
| dc.subject | 養分 | zh_TW |
| dc.subject | endplate | en |
| dc.subject | permeability | en |
| dc.subject | metabolic | en |
| dc.subject | nutrient | en |
| dc.subject | intervertebral disc | en |
| dc.subject | genipin | en |
| dc.title | 探討區域差異與梔子素對健康椎終板之雙向靜水壓阻的影響 | zh_TW |
| dc.title | Effect of Region and Genipin on Bi-directional Hydrostatic Pressure Resistance of Healthy Vertebral Endplate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晉,莊仕勇,趙振綱,蘇芳慶 | |
| dc.subject.keyword | 椎間盤,椎終板,滲透性,養分,新陳代謝,梔子素, | zh_TW |
| dc.subject.keyword | intervertebral disc,endplate,genipin,nutrient,metabolic,permeability, | en |
| dc.relation.page | 32 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
