請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3711完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉德銘(Der-Ming Yeh) | |
| dc.contributor.author | Yi-Shuan Chen | en |
| dc.contributor.author | 陳以萱 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:08Z | - |
| dc.date.available | 2019-08-24 | |
| dc.date.available | 2021-05-13T08:36:08Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-17 | |
| dc.identifier.citation | 阮育雄. 2003. 鳳梨花外銷中國大陸之潛力與策略. 臺灣花卉園藝 193:16-20.
林昭儀. 2006. 遮光、溫度與無機養分對擎天鳳梨‘Cherry’生長之影響. 國立臺灣大學園藝學系碩士論文. 臺北. 林嘉洋. 2006. 耐熱矮牽牛之耐熱性與耐熱指標. 國立臺灣大學園藝學系碩士論文.臺北. 郭倩妤. 2005. 硼、氯化鈉、儲運、溫度與澆水頻率對擎天鳳梨葉片生長與產後品質之影響. 國立臺灣大學園藝學系碩士論文. 臺北. 陳柏文. 2005. 彩葉屬(Neoregelia)、鶯歌屬(Vriesea)及空氣屬(Tillandsia)觀賞鳳梨組織培養器官發生與體胚發生之研究. 國立臺灣大學園藝學系碩士論文. 臺北. 陳祈男、葉德銘、林宗賢. 2011. 化學藥劑處理改善擎天鳳梨盆花貯後品質之效果. 臺灣園藝 57:183-195. 楊子億. 2014. 2012年與2013年高雄花市盆花交易品前10大銷售排行概況. 臺灣花卉園藝 328:59-62. Abernethy, R.H., D.S. Thiel, N.S. Petersen, and K. Helm. 1989. Thermotolerance is developmentally dependent in germinating wheat seed. Plant Physiol. 89:569-576. Adams, W.W. and C.E. Martin. 1986. Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Amer. J. Bot. 73:1207-1214. Anthura. 2004. Cultivation Guidelines Bromeliad. Anthura, Holland. Aparicio, P.J., M.P. Azuara, A. Ballesteros, and V.M. Fernández. 1985. Effects of light intensity and oxidized nitrogen sources on hydrogen production by Chlamydomonas reinhardii. Amer. Soc. Plant Biol. 78:803-806. Barker, A. and H.A. Mills. 1979. Ammonium and nitrate nutrition of horticultural plants. Hort. Rev. 1:395-423. Bednarz, C., D. Oosterhuis, and R. Evans. 1998. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ. Expt. Bot. 39:131-139. Benzing, D.H. and A. Renfrow. 1974. The mineral nutrition of Bromeliaceae. Bot. Gaz. 135:281-288. Benzing, D.H., K. Henderson, B. Kessel, and J. Sulak. 1976. The absorptive capacities of bromeliad trichomes. Amer. J. Bot. 63:1009-1014. Bolhar-Nordenlampf, H., S. Long, N. Baker, G. Oquist, U. Schreiber, and E. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol. 3:497-514. Botrel, N., L.F.S. Souza, A.G. Soares, V.F. Medina, and S.C. Freitas. 2004. Influência do potássio na suscetibilidade ao escurecimento interno do abacaxi ‘Pérola’ (Ananas comosus L.). Rev. Iber. Tec. Postc. 6:17-23. Cambuí, C.A., M. Gaspar, and H. Mercier. 2009. Detection of urease in the cell wall and membranes from leaf tissues of bromeliad species. Physiol. Plant. 136:86-93. Carvalho, M.A., S. de Machado, and M.C. Dietrich. 1993. Variation in fructan content in the underground organs of Vernonia herbacea (Veil.) Rusby at different phenological phases. New Phytol. 123:735-740. Castro-Hernandez, J.C., J.H.D. Wolf, J.G. Garcia-Franco, and M. Gonzalez-Espinosa. 1999. The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Rev. Biol. Trop. 47:763-773. Chase, A.R. 1997. Foliage plant diseases: Diagnosis and control. The American Phytopathological Society, USA. Clarkson, D.T., M.J. Hopper, and L.H.P. Jonse. 1986. The effect of root temperature on uptake of nitrogen and the relative size of the root system in Lolium perenne. I. Solutions containing both NH4+ and NO3-. Plant Cell Environ. 9:535-545. Comstock, J. and J.L. Ehleringer. 1984. Photosynthetic response to slowly decreasing leaf water potentials in Encelia fructescens. Oecologia 61:241-248. Crawford, N.M. and A.D. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389-395. del Monte, J.P. and A.M. Tarquis. 1997. The role of temperature in the seed germination of two species of the Solanum nigrum complex. J. Expt. Bot. 48:2087-2093. Demig-Adams, B. 1989. Lichtstre und Lichtschutz bei Planzen. Naturwissenschaften 76:262-267. Drennan, P., M. Simth, D. Goldswrothy, and J. Stasen. 1993. The occurrence of trehalose in the leaves of the dessication tolerant angiosperm Myrothamnus flabellifolius Welw. Plant Physiol. 142:493-496. du Preez, D. and G. Bate. 1989. A simple method for the quantitative recovery of nitrate‐N during Kjeldahl analysis of dry soil and plant samples. Comm. Soil Sci. Plant Anal. 20:345-357. Endres, L. and H. Mercier. 2001a. Ammonium and urea as nitrogen sources for bromeliads. J. Plant Physiol. 158:205-212. Endres, L. and H. Mercier. 2001b. Influence of nitrogen forms on the growth and nitrogen metabolism of bromeliads. J. Plant Nutr. 24:29-42. Epstein, E. and A.J. Bloom. 2005. Mineral nutrition of plants: Principles and perspectives. Sinauer Associates, USA. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9-19. Farquhar, G.D. and T.D. Sharkey, 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant. Physiol. 33:317-345. Fernandes, J., R.M. Chaloub, and F. Reinert. 2002. Influence of nitrogen supply on the photoprotective response of Neoregelia cruenta under high and low light intensity. Funct. Plant Biol. 29:757-762. Fetene, M., H.S.J. Lee, and U. Lüttge. 1990. Photosynthetic acclimation in a terrestrial CAM bromeliad: Bromelia humilis Jacq. New Phytol. 114:399-406. Field, C. and H.A. Mooney. 1986. The photosynthesis-nitrogen relationship in wild plants, p. 25-55. In: T.J. Givnish (ed.). On the economy of planat form and function. Cambridge University Press, Cambridge, U.K. Geiger, M., V. Haake, F. Ludewig, U. Sonnewald, and M. Stitt. 1999. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ. 22:1177-1199. Goode, L.K. and M.F. Allen. 2009. Seed germination conditions and implications for establishment of an epiphyte, Aechmea bracteata (Bromeliaceae). Plant Ecol. 204:179-188. Griffith, L.P. 2006. Tropical foliage plants: A grower’s guide. Ball publishing, USA. Hill, M.J. and R. Luck. 1991. The effect of temperature on germination and seedling growth of temperate perennial pasture legumes. Aust. J. Agr. Res. 42:175-189. Inselsbacher, E., C.A. Cambui, A. Richter, C.F. Stange, and H. Mercier. 2007. Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantean. New Phytol. 175:311-320. Jacobsen, S.E. and A.P. Bach. 1998. The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd.). Seed Sci. Technol. 26:515-523. Jia, Y., X. Yang, E. Islam, and Y. Feng. 2008. Effect of potassium deficiency on chloroplast ultrastructure and chlorophyll fluorescence in inefficient and efficient genotypes of rice. J. Plant Nutr. 31:2105-2118. Johnson, C.M., P.R. Stout, T.C. Broyer, and A.B. Carlton. 1957. Comparative chlorine requirements of different plant species. Plant Soil. 4:337-353. Kanashiro, S. 2005. Nitrogen, phosphorus, potassium, calcium, and the in vitro growth of Aechmea blanchetiana (Backer) L.B. Smith plantlets. Universidade de São Paulo, Piracicaba, PhD Diss. Khamis, S., T. Lamaze, Y. Lemoine, and C. Foyer. 1990. Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation relationships between electron transport and carbon assimilation. Plant Physiol. 94:1436-1443. Klerk, G.J., and P. Pumisutapon. 2008. Protection of in vitro grown Arabidopsis seedlings against abiotic stress. Plant Cell Tiss. Organ Cult. 95:149-154. Ku, C.S.M. and D.R. Hershey. 1997. Growth response, nutrient leaching and mass balance for potted poinsettia. I. Nitrogen. J. Amer. Soc. Hort. Sci. 122:452-458. Lange, O.L. and E. Media. 1979 Stomata of the CAM plant Tillandsia recurvate respond directly to humidity. Oecologia 40:357-363. Li, X.T., P. Cao, X.G. Wang, M.J. Cao, and H.Q. Yu. 2011. Comparison of gas exchange and chlorophyll fluorescence of low-potassium-toleramt and -sensitive soybean [Glycine max (L.) Merr.] cultivars under low-potassium condition. Photosynthetica 49:633-636. Lichtenthaler, H. K., G. Kuhn, U. Prenzel, C. Bushman, and D. Meier. 1982. Adaptation of chloroplast ultra-structure and of chlorophyll protein levels to high light and low light growth conditions. Zeitschrift far Naturforschung 37:464-475. Lima, J., P. Mosquin, and F. Da Matta. 1999. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitogen and phosphorus deficiency. Photosynthetica 37:113-121. Lin, C.Y. and D.M. Yeh. 2008. Potassium nutrition affects leaf growth, anatomy and macroelements of Guzmania. HortScience. 43:146-148. Long, S.P. and J.E. Hallgren. 1985. Measurement of CO2 assimilation by plants in the field and laboratory. Tech. Bioprod. Photosyn. 4:62-94. Luciana, C.C., D.R. de Almeida, and C.F.D. Rocha. 1998. Phenotypic response of Neoregelia johannis (Bromeliaceae) dependent on light intensity reaching the plant microhabitat. Selbyana 19:240-244. Luttge, U., K.H. Stimmel., J.A.C. Smith., and H. Griffiths. 1986. Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. Plant Cell Environ. 9:377-383. Majerowicz, N., G.B. Kerbauy, C.C. Nievola, and R.M. Suzuki. 2000. Growth and nitrogen metabolism of Catasetum fimbriatum (Orchidaceae) grown with different nitrogen sources. Environ. Expt. Bot. 44:195-206. Mantovvain, A. and R.R. Iglesias. 2008. Factors limiting seed germination of terrestrial bromeliads in the sandy coastal plants of Marica, Rio de Janeiro, Brazil. Rodriguesia 59:135-150. Martin, C.E. 1994. Physiological ecology of the Bromeliaceae. Bot. Rev. 60:1-82. Martin, C.E., K.W. McLeod, C.A. Eades, and A.F. Pitzer. 1985. Morphological and physiological responses to irradiance in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae). Bot. Gaz. 146:489-494. Maxwell, K., J.L. Marrison, R.M. Leech, H. Griffiths, and P. Horton. 1999. Chloroplast acclimation in leaves of Guzmania monostachia in response to high light. Plant Physiol. 121:89-95. Medina, E. 1982. Physiological ecology of neotropical savanna plants. Ecol. Trop. Savannas 42:308-335. Medina, E., M. Delgado, J.H. Troughton, and J.D. Medina. 1977. Physiological ecology of CO2 fixation in Bromeliaceae. Flora 166:137-152 Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition. 5th. ed. Kluwer Academic Publishers, MA., U.S.A. Mercier, H., G.B. Kerbauy, B. Sotta, and E. Miginiac. 1997. Effects of NO3-, NH4+ and urea nutrition on endogenous levels of IAA and four cytokinins in two epiphytic bromeliads. Plant Cell Environ. 20:387-392. Nadkarni, N.M. and R.B. Primack. 1989. The use of gamma spectrometry to measure within-plant nutrient allocation of a tank bromeliad, Guzmania lingulata. Selbyana 11:22-25. Nievola, C.C., H. Mercier, and N. Majerowicz. 2001. Levels of nitrogen assimilation in bromeliads with different growth habits. J. Plant Nutr. 24:1387-1398. Ozbun, J.L., R.J. Volk, and W.A. Jackson. 1965. Effect of potassium deficiency on photosynthesis, respiration and the utilization of photosynthetic reductant by immature bean leaves. Crop Sci. 5:69-75. Parkhurst, R.W. 2000. The book of bromeliads and Hawaiian tropical flowers. Pacific Isle Publish, U.S.A . Parton, E., I. Vervaeke, R. Deroose, and M.P. de Proft. 2001. Interspecific and intergeneric fertilization barriers in Bromeliaceae. Acta. Hort. 552:43-53. Pedroso, A.N.V., R.A. de Lazarin, V. Tamaki, and C.C. Nievola. 2010. In vitro culture at low temperature and ex vitro acclimatization of Vriesea inflate, an ornamental bromeliad. Rev. Brasil Bot. 33:407-414. Pia, W.L., N. Günter, B. Fritz, and E. Christof. 2000. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Expt. Bot. 51:227-237. Pierce, S., K. Winter, and H. Griffiths. 2002. Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. New Phytol. 156:75-83. Pompelli, M.F., D. Fernandes., and M.P. Guerra. 2006. Germination of Dyckia encholirioides (Gaudichaud) Mez var. encholirioides under saline conditions. Seed Sci. Technol. 34:759-763. Prado, R.M. 2008. Plant nutrition. São Paulo. Reich, A., J.J. Ewel, and N.M. Nadkarni. 2003. Nitrogen isotope ratios shift with plant size in tropical bromeliads. Oecologia 137:587-590. Reidl, R. 1990. Origin, distribution and ecology. In: B.E. Williams and I. Hodgson (eds.). Growing bromeliads. Timber Press, Portland, U.S.A. Richardson, B.A., M.J. Richardson, F.N. Scatena, and W.H. McDowell. 2000. Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. J. Trop. Ecol. 16:167-188. Roude, N., T.A. Nell, and J.E. Barrett. 1991. Nitrogen source and concentration, growing medium, and cultivar affect longevity of potted chrysanthemums. HortScience 26:49-52. Schubert, S. and F. Yan. 1997. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+ATPase. Zeitschrift fur Pflanzenernahrung und Bodenkunde 160:275-281. Scoggins, H.L. and H.A. Mills. 1998. Poinsettia growth, tissue nutrient concentration, and nutrient uptake as influenced by nitrogen form and stage of growth. J. Plant Nutr. 21:191-198. Scoggins, H.L., D.A. Bailey, and P.V. Nelson. 2002. Efficacy of the press extraction method for bedding plant plug nutrient monitoring. HortScience 37:108-112. Shen, G.W.H. and J.G. Seeley. 1983. The effect of shading and nutrient supply on variegation and nutrient content of variegated cultivars of Peperomia obtusifolia. J. Amer. Soc. Hort. Sci. 108:429-433. Smith, J.A.C., H. Griffiths., and U. Luttge. 1986. Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeliaceae in Trinidad. Plant Cell Environ. 9:359-376. Smith, J.A.C. 1989. Epiphytic Bromeliads, p.109-138. In: L. Ulrich (ed.). Vascular plants as epiphytes. Springer-Verlag, Berlin. Tavares, A.R., S. Kanashiro, T. Jocys, R.C.S. Ribeiro, and A.N. Gonçalves. 2012. Effect of potassium on growth and nutrients contents in ornamental bromeliad cultured in vitro. Acta Hort. 938:315-320. Vergutz, L., S. Manzoni, A. Porporato, R.F. Novais, and R.B. Jackson. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82:205-220. Verhoeven, A.S., W.W. Adams, and B.A. Demmig. 1999. The xanthophyll cycle and acclimatization of Pinus ponderosa and Malva neglecta to winter stress. Oecologia 18:277-287. Wang, Y.T. and E.A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Amer. Soc. Hort. Sci. 127:442-447. Williams, B.E. and I. Hodgson. 1990. Growing bromeliads. Christopher Helm, London. Winkler, U. and G. Zotz. 2009. Highly efficient uptake of phosphorus in epiphytic bromeliads. Ann. Bot. 103:477-484. Xu, G., S. Wolf, and U. Kafkafi. 2002. Ammonium on potassium interaction in sweet pepper. J. Plant Nutr. 25:719-734. Yamada, T., T. Okuda, M. Abdullah, M. Awang, and A. Furukawa. 2000. The leaf development process and its significance for reducing self-shading of a tropical pioneer tree species. Oecologia 125:476-482 . Zhao, D.L., D.M. Oosterhus, and C.W. Bednarz. 2001. Influenceof potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103-109. Zotz, G. and P. Hietz. 2001. The physiological ecology of vascular epiphytes: Current knowledge, open questions. J. Expt. Bot. 52:2067-2078. Zotz, G., A. Enslin, W. Hartung, and H. Ziegler. 2004. Physiological and anatomical changes during the early ontogeny of the heteroblastic bromeliad, Vriesea sanginolenta, do not concur with the morphological change form atmospheric to tank form. Plant Cell Environ. 27:1341-1350. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3711 | - |
| dc.description.abstract | 彩葉鳳梨(Neoregelia sp.)之花苞片顏色鮮豔且觀賞期可長達半年,深具戶外景觀及室內觀賞潛力,然而育苗期長且目前仍缺乏光度、溫度及養分需求之研究。因此本研究主要目的為瞭解溫度、光度及養液濃度、氮及鉀營養對彩葉鳳梨雜交實生穴盤苗光合作用與營養生長之影響。
將彩葉鳳梨四個雜交組合之種子播於日夜溫20/15、25/20、30/25及35/30oC下,以25/20、30/25oC處理者達50%種子發芽時間少,20/15oC處理延後發芽,而35/30oC處理不僅延後發芽且使最大發芽率下降。將三個彩葉鳳梨雜交組合、具4-5 張本葉之小苗栽培於15/13、20/15、25/20、30/25及35/30oC下,亦以25/20、30/25oC處理者具較高全株淨光合作用速率、地上部、地下部乾重、葉片數、葉面積及葉綠素計讀值,20/15oC處理者各項調查參數較25/20及30/25oC處理者低,而15/13oC處理對植株造成冷害,35/30oC處理則使植株死亡。 將彩葉鳳梨‘Pink Sensation’ × ‘Gold Fever’第一張本葉展開之實生苗以3種遮光程度(20%、50%、77%,中午平均光度分別為858、561、258 μmol•m-2•s-1)配合3種強生氏養液濃度(50%、100%、200%)與自來水栽培。結果顯示施用100%強生氏養液下,以77%遮光處理之光補償點、光飽和點、最大光合作用速率、暗呼吸速率較低。於20%遮光下,以200%強生氏養液處理之全株淨光合作用、光補償點、光飽和點、最大光合作用速率、暗呼吸速率較高。遮光程度與養液濃度處理間對植株生長具交感效應,以20%遮光程度搭配200%強生氏養液處理之地上部、地下部乾重、葉片數、葉面積、葉綠素計讀值較高;施用自來水者植株無明顯生長。 於彩葉鳳梨‘Pink Sensation’ × ‘Gold Fever’實生苗第一張本葉展開時,每週施用一次含0、4、8、12、16、20、24、28、32 mM N之強生氏養液。結果顯示隨養液N濃度由0增加至20-28 mM時,穴盤苗全株光飽和點、最大光合作用速率上升,光補償點無顯著變化。隨養液N濃度由0增加至20-24 mM,地上部、地下部乾重、葉片數、葉面積、葉綠素計讀值增加,養液N濃度再提高至24-32 mM則不再顯著增加。隨養液N濃度增加植體C及N濃度增加,養液N濃度對植體P及K濃度無顯著影響。養液N濃度由0增加至8 mM 植體Ca濃度增加,由12至32 mM N處理則下降。隨養液N濃度增加,植體Mg濃度下降。 於彩葉鳳梨‘Pink Sensation’ × ‘Gold Fever’實生苗第一張本葉展開時,每週施用一次含NH4+:NO3-比例為0:100、25:75、50:50、75:25及100:0之強生氏養液。結果顯示25:75、50:50處理者之全株最大光合作用速率較高,光補償點較低。以25:75處理之地上部及地下部乾重、葉長、葉寬、葉片數、葉面積明顯較高。以0:100及25:75處理者植體C濃度較高,25:75、50:50處理者植體N濃度較低,全銨態氮或全硝態氮處理者植體N濃度較高,0:100、50:50、100:0處理者植體P及K濃度較25:75及75:25處理者低,養液氮型態對植體Ca及Mg濃度無顯著影響。 於彩葉鳳梨‘Pink Sensation’ × ‘Gold Fever’實生苗第一張本葉展開時,每週施用一次含0、2、4、6、8、10 mM K之強生氏養液。結果顯示以0-2 mM K處理之光補償點、光飽和點、暗呼吸速率較高,4-10 mM K處理之光補償點、光飽和點、暗呼吸速率較低。養液K濃度由0增加至6-8 mM時,地上部、地下部乾重、葉片數、葉片長、寬、厚度增加,葉綠素計讀值降低。隨養液K濃度增加,植體C、N濃度下降,隨養液K濃度由0增加至4-6 mM植體P濃度增加,養液K濃度再提升則下降。隨養液K濃度增加,植體K濃度上升。養液K濃度對植體Ca、Mg濃度無顯著影響。 | zh_TW |
| dc.description.abstract | Neoregelia species have long - lasting showy bracts and have been widely used in outdoor and indoor landscaping. Production was long and could be hastened by manipulating environmental conditions and nutrient management to for seedling growth. The objectives of the study were to determine the effects of temperature, light and nutrient solution concentration, and nitrogen and potassium nutrient requirement on leaf growth and photosynthesis.
Hybrid seeds of four Neoregelia cross combinations were sown under day/night temperatures of 20/15, 25/20, 30/25, and 35/30oC. Results showed that the time for seeds to reach 50% germination was earlier at 25/20 and 30/25oC than 20/15 and 35/30oC. Maximum germination percentage were lower when sown at 35/30oC. Hybrid seedlings with 4-5 leaves of three Neoregelia cross combinations were grown under various temperatures. Results showed plants had higher whole plant net photosynthesis, shoot and root dry weights, leaf number, leaf area, and SPAD-502 reading value at 25/20 and 30/25oC than at 20/15oC. Plants at 15/13oC showed cooling injury, and all died when grown at 35/30oC. Neoregelia ‘Pink Sensation’ × ‘Tricolor’ seedlings with the first expanded true leaf were grown under three shading levels (20%, 50%, and 77%, ca. 859, 567, and 258 μmol•m-2•s-1 averaged noon time PPF) with four Johnson’s solution (J) strength (0%, 50%, 100%, and 200%). When supplied with 100% J, plants grown under 77% shading had lower light compensation point (LCP), light saturation point (LSP), light saturated photosynthesis rate (Amax), and dark respiration (Rd). Plants supplied with 200% J under 20% shading, had the highest whole plant net photosynthesis, LCP, LSP, Amax, and Rd, shoot and root dry weights, leaf number, leaf area, and SPAD-502 value. Seedlings were stunt when supplied with tap water only. Neoregelia ‘Pink Sensation’ × ‘Tricolor’ seedlings with the first expanded true leaf were supplied with various nitrogen (N) concentrations weekly. Results showed LSP and Amax increased with increasing N from 0 to 20-28 mM. Light compensation point did not differ between treatments. Shoot and root dry weights, leaf number, leaf area, and SPAD-502 value increased as N concentration increased from 0 to 20-24 mM, and saturated thereafter. Plant C and N concentration increased with increasing solution N concentration. Plant K and P concentration did not differ between solution N concentration treatments. Plant Ca concentration increased when solution N concentration increased from 0 to 8 mM, but decreased as solution N increased from 12 to 32 mM. Plant Mg concentration decreased with increasing solution N concentration. Neoregelia ‘Pink Sensation’ × ‘Tricolor’ seedlings with the first expanded true leaf were supplied with 0 : 100, 25 : 75, 50 : 50, 75 : 25, and 100 : 0 NH4+ : NO3- weekly. Result showed plants had the heighest Amax and lowest LCP when supplied with 25 : 75 and 50 : 50 NH4+ : NO3-. Plants had the heighest shoot and dry weights, leaf length, leaf width, leaf number, leaf area and plant C concentration but lowest plant N concentration when supplied with 25 : 75 NH4+ : NO3-. Plant P and K concentration were lowest when supplied with 0 : 100, 50 : 50, 100 : 0 NH4+ : NO3-. Solution nitrogen form did not alter plant Ca and Mg concentrations. Neoregelia ‘Pink Sensation’ × ‘Tricolor’ seedlings with the first expanded true leaf were supplied with 0, 2, 4, 6, 8, 10 mM K. Result showed plants at 0-2 mM K had higher LCP, LSD, and Rd than those at 4-10 mM K. Amax increased with increasing K concentration from 0 to 8 mM, but decreased with further increased K concentration to 10 mM. Shoot and dry weights, leaf number, leaf length, leaf width, and thickness increased, but SPAD-502 decreased, when K concentration increased from 0 to 6-8 mM. Plant C and N concentration decreased with increasing solution K concentration. Plant P concentration increased with increasing solution K concentration from 0 to 4-6 mM, but decreased when solution K concentration further increased. Plant K concentration increased with increasing solution K concentration. Solution K concentration did not alter plant Ca and Mg concentration. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:08Z (GMT). No. of bitstreams: 1 ntu-105-R03628115-1.pdf: 2089727 bytes, checksum: 74485b59c9e93ce3584c3a7a6d939742 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
摘要.................................................... i Abstract............................................... iii 目錄.................................................... vii 表目錄.................................................. ix 圖目錄.................................................. xi 前言(Introduction)...................................... 1 前人研究(Literature Review)............................. 3 一、觀賞鳳梨之分類與生長習性............................... 3 二、影響觀賞鳳梨生長之環境因子.............................4 三、觀賞鳳梨對無機養分之需求............................... 7 材料與方法(Materials and Methods)........................ 13 試驗一、溫度對彩葉鳳梨雜交種子發芽之影響.................... 13 試驗二、溫度對彩葉鳳梨實生穴盤苗光合作用與生長之影響......... 14 試驗三、遮光與養液對彩葉鳳梨實生穴盤苗光合作用與生長之影響.... 16 試驗四、養液氮濃度對彩葉鳳梨實生穴盤苗光合作用與生長之影響.... 17 試驗五、養液氮型態對彩葉鳳梨實生穴盤苗光合作用與生長之影響.... 20 試驗六、養液鉀濃度對彩葉鳳梨實生穴盤苗光合作用與生長之影響.... 22 結果(Results)........................................... 25 試驗一、溫度對彩葉鳳梨雜交種子發芽之影響.................... 25 試驗二、溫度對彩葉鳳梨實生穴盤苗光合作用與生長之影響......... 25 試驗三、遮光與養液對彩葉鳳梨實生穴盤苗光合作用與生長之影響.... 26 試驗四、養液氮濃度對彩葉鳳梨實生穴盤苗光合作用與生長之影響.... 27 試驗五、養液氮型態對彩葉鳳梨實生穴盤苗生長與光合作用之影響.... 28 試驗六、養液鉀濃度對彩葉鳳梨實生穴盤苗生長與光合作用之影響.... 29 討論(Discussion)........................................ 75 綜合討論與結論(General Discussion and Conclusion)........ 87 參考文獻(References).................................... 89 附錄(Appendix)..........................................99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光補償點 | zh_TW |
| dc.subject | 光飽和點 | zh_TW |
| dc.subject | 銨硝比 | zh_TW |
| dc.subject | 乾重 | zh_TW |
| dc.subject | 營養元素分析 | zh_TW |
| dc.subject | light compensation point | en |
| dc.subject | light saturation point | en |
| dc.subject | ammonium to nitrate ratio | en |
| dc.subject | dry weight | en |
| dc.subject | nutrition analysis | en |
| dc.title | 溫度、遮光與無機養分對彩葉鳳梨穴盤苗光合作用與生長之影響 | zh_TW |
| dc.title | Effect of Temperature, Shading, and Mineral Nutrient on Photosynthesis and Growth of Neoregelia Plug Seedlings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅筱鳳(Hsiao-Feng Lo),蔡智賢(Jyh-Shyan Tsay),沈榮壽(Rong-Show Shen) | |
| dc.subject.keyword | 光補償點,光飽和點,銨硝比,乾重,營養元素分析, | zh_TW |
| dc.subject.keyword | light compensation point,light saturation point,ammonium to nitrate ratio,dry weight,nutrition analysis, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201602651 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 2.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
