請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37113
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張顏暉(Yuan-Huei Chang) | |
dc.contributor.author | Ching-Hsiang Hsu | en |
dc.contributor.author | 許景翔 | zh_TW |
dc.date.accessioned | 2021-06-13T15:19:26Z | - |
dc.date.available | 2008-07-30 | |
dc.date.copyright | 2008-07-30 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-22 | |
dc.identifier.citation | chapter 1
Reference: [1] Y. Aharanov and D. Bohm. Phys. Rev. Lett. 115, 485 (1959) [2] A.V. Chaplik, JETP Lett. 62, 900 (1995) [3] A. V. Kalameitsev, A. O. Govorov and V. M. Kovalev. JEPT Lett. 68, 669 (1998) [4] A. O. Govorov, S. E. Ulloa, K. Karrai and R. J. Warburton. Phys. Rev. B. 66, 081309(R) (2002) [5] M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel and A. Forchel. Phys. Rev. Lett. 90, 186801 (2003) [6] E. Ribeiro, A. O. Govorov, W. Carvalho Jr and G. Medeiros-Ribeiro. Phys. Rev. Lett. 92, 126402 (2004) [7] L. G. G. V. Dias da Silva, S. E. Ulloa, and A. O. Govorov. Phys. Rev. B. 70, 155318 (2004) [8] I. L. Kuskovsky, W. MacDonald, A. O. Govorov, L. Muroukh, X. Wei, M. C. Tamargo, M. Tadic and F. M. Peeters. Phys. Rev. B. 76, 035342 (2007) chapter 2 Reference: [1] V. Fock, Z. Phys. 47, 446 (1928) [2] Mitsuru Sugawara et al. Phys. Rev. B. 48, 8848 (1993) [3] R. S. Knox, Theory of Excitons (Academic, New York, 1963) [1] Y. Aharanov and D. Bohm. Phys. Rev. Lett. 115, 485 (1959) [2] A. O. Govorov, S. E. Ulloa, K. Karrai and R. J. Warburton. Phys. Rev. B. 66, 081309(R) (2002) [3] A. Lorke et al., Phys. Rev. Lett. 84, 2223 (2000). [4] J.M. Garcia et al., Appl. Phys. Lett. 71, 2014 (1997). [5] F. Hatami et al., Appl. Phys. Lett. 67, 656 (1995) [6] A.I. Yakimov et al., Phys. Rev. B 63, 045312 (2001) [7] M. Hayne et al., ibid. 62, 10 324 (2000). [8] L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots ~Springer Verlag, Berlin, (1998). [9] A.B. Kalameitsev, V.M. Kovalev, and A.O. Govorov, JETP Lett. 68, 669 (1998) [10] K.L. Janssens, B. Partoens, and F.M. Peeters, Phys. Rev. B 64, 155324 (2001). [11] L. G. G. V. Dias da Silva, S. E. Ulloa, and A. O. Govorov. Phys. Rev. B. 70, 155318 (2004) chapter 3 Reference: [1] C. T. Cheng, C. Y. Chen, C. W. Lai, W. H. Liu, S. C. Pu, P. T. Chou, Y. H. Chou, and H. T. Chiu. J. Mater. Chem. 15, 3409-3412 (2005) [2] C. Y. Chen, C. T. Cheng, C. W. Lai, Y. H. Hu, P. T. Chou, Y. H. Chou, and H. T. Chiu. Small 12, 1215 (2005) [3] P. T. Chou, C. Y. Chen, C. T. Cheng, S. C. Pu, K. C. Wu, Y. M. Cheng, Y. H. Chou, and H. T. Chiu. Chem. Phys. Chem. 7, 222 (2006) [4] L. V. Titova, J. K. Furdyna, M. Dobrowolska, S. Lee, T. Topuria, P. Moeck, and N. D. Browning, Appl. Phys. Lett. 80, 1237 (2002) [5] L. Landin, M. S. Miller, M. E. Pistol, C. E. Pryor, L. Samuelson, Science 280, 262 (1998) [6] G. Bacher, T. Kummell, D. Eisert, A. Forchel, B. Konig, W. Ossau, C. R. Becker, and G. Landwehr, Appl. Phys. Lett. 75, 956 (1999) [7] D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, Nano. Lett. 1, 3 (2001) [8] P. R. Kratzert, J. Puls, M. Rabe, and F. Henneberger, Appl. Phys. Lett. 79, 2814 (2001) [9] S. H. Xin, P. D. Wang, Aie Yin, C. Kim, M. Dobrowolska, J. L. Merz, J. K. Furdyna, Appl. Phys. Lett. 69, 3884 (1996) [10] S. Makino, T. Miyamoto, T. Kageyama, N. Nishiyama, F. Koyama, K. Iga, J. Cryst. Growth 221, 561 (2000) [11] K. Suzuki, U. Neukirch, J. Gutowski, N. Takojima, T. Sawada, K. Imai, J. Crystal Growth 184/185, 882 (1998) [12] Tzung Te Chen, Master Thesis, National Taiwan University, 2004. [13] T. H. Gfroerer, in Encyclopedia of Analytical Chemistry (2000), p. 9209 chapter 4 Reference: [1] C. T. Cheng, C. Y. Chen, C. W. Lai, W. H. Liu, S. C. Pu, P. T. Chou, Y. H. Chou, and H. T. Chiu. J. Mater. Chem. 15, 3409-3412 (2005) [2] C. Y. Chen, C. T. Cheng, C. W. Lai, Y. H. Hu, P. T. Chou, Y. H. Chou, and H. T. Chiu. Small 12, 1215 (2005) [3] P. T. Chou, C. Y. Chen, C. T. Cheng, S. C. Pu, K. C. Wu, Y. M. Cheng, Y. H. Chou, and H. T. Chiu. Chem. Phys. Chem. 7, 222 (2006) [4] S. Kim, B. Fisher, H. J. Eisler, M. G. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466-11467. [5] C. H. Wang, T. T. Chen, K. W. Tan, Y. F. Chen, C. T. Cheng, and P. T. Chou, J. Appl. Phys. 99, 123521 (2006) [6] J. Y. Chang, S. R. Wang, and C. H. Yang, Nanotechnology, 18, 345602 (2007) [7] J. Jack Li, James M. Tsay, Xavier Michalet, and Shimon Wesiss, Chem. Phys. 318, 82-90 (2005) [8] L. G. G. V. Dias da Silva, S. E. Ulloa, and A. O. Govorov. Phys. Rev. B. 70, 155318 (2004) [9] E. Ribeiro, A. O. Govorov, W. Carvalho Jr and G. Medeiros-Ribeiro. Phys. Rev. Lett. 92, 126402 (2004) [10] N. Miura, H. Kunimatsu, K, Uchida, Y. Matsuda, T. Yasuhira, H. Nakashima, Y. Sakuma, Y. Awano, T. Futatsugi, N. Yokoyama, Physica B 256–258, 308 (1998) [11] N. Miura, Y.H. Matsuda, K. Uchida, H. Arimoto, J. Phys.:Condens. Matter 11, 5917 (1999). [12] Y. Nagamune, Y. Arakawa, S. Tsukamoto, M. Nishioka, S. Sasaki, N. Miura, Phys. Rev. Lett. 69, 2963 (1992). [13] R.K. Hayden, K. Uchida, N. Miura, A. Polimeni, S.T. Stoddart, M. Henini, L. Eaves, P.C. Main, Physica B 246–247, 93 (1998). [14] A. O. Govorov, S. E. Ulloa, K. Karrai and R. J. Warburton. Phys. Rev. B. 66, 081309(R) (2002) [15] M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel and A. Forchel. Phys. Rev. Lett. 90, 186801 (2003) [16]M. Hayne, R. Provoost, M. K. Zundel, Y. M. Manz, K. Eberl, and V. V. Moshchalkov, Phys. Rev. B 62, 10324 (2000) [17]. L. Janssens, B. Partoens, and F. M. Peeters. Phys. Rev. B 64, 155324 (2001) [18] K. L. Janssens, B. Partoens, and F. M. Peeters. Phys. Rev. B 69, 235320 (2004) chapter 5 Reference: [1] P. M. Petroff, A. C. Gossard, R. A. Logan, and W. Wiegmann, Appl. Phys. Lett. 41, 635 (1982). [2] F. E. Prins, G. Lehr, M. Burkard, H. Schweizer, M. H. Pilkuhn, and G. W. Smith, Appl. Phys. Lett. 62, 1365 (1993). [3] M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. M. Frensley, J. W. Lee, and H. D. Smith, J. Vac. Sci. Technol. B 4, 358 (1986). [4] P. M. Petroff and S. P. Denbaars, Superlattices Microstruct. 15, 5 (1994). [5] Y. Nabetani, T. Ishikawa, S. Noda, and A. Sakai, J. Appl. Phys. 76, 347 (1994). [6] J. Y. Marzin, J. M. Gérard, A. Izraël, D. Barrier, and G. Bastard, Phys. Rev. Lett. 73, 716 (1994). [7] F. M. Peeters and A. Schweigert, Phys. Rev. B 53, 1468 (1996). [8] R. Notzel et al., Appl. Phys. Lett. 66, 2525 (1995). [9] J. Y. Marzin and G. Bastard, Solid State Commun. 92, 437 (1994). [10] S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, Phys. Rev. B 52, 5752 (1995). [11] Y. Rajakarunanayake et al. , J. Vac. Sci. Technol. B 6, 1354 (1988) [12] Johnson Lee, Chu Shou Yang, Chun Tai Chang, Jerron Liu, Wu Ching Chou, Chin Ming Lai, Gwo Jen Jan, and Yin Sheng Huang. Phys. Stat. sol. (b) 241, No. 15, 3532-3543 (2004) [13] C. S. Yang, D. H. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan, and S. L. Tu, J. Appl. Phys. 83, 2555(1998) [14] Vitaliy A. Schchukin and Dieter Bimberg, Rev. Mod. Phys. 71, 1125-117 (1999) [15] M. C. Kuo. et al, Appl. Phys. Lett. 89, 263111 (2006) [16] Vitaliy A. Schchukin and Dieter Bimberg, Rev. Mod. Phys. 71, 1125-117 (1999) [17] L. G. G. V. Dias da Silva, S. E. Ulloa, and A. O. Govorov. Phys. Rev. B. 70, 155318 (2004) [18] Guang-Yin Chen, Yueh-Nan Chen, and Der-San Chuu, Solid State Communications 143, 515-518 (2007) chapter 6 Reference: [1] D. Lee, A. Mysyrowicz, A. V. Nurmikko, and B. J. Fitzpatrick, Phys. Rev. Lett. 58, 1475 (1987) [2] Q. Fu, D. Lee, A. V. Nurmikko, L. A. Kolodziejski, and R. L. Gunshor, Phys. Rev. B 39, 3173 (1989) [3] C. D. Lee, H. L. Park, C. H. Chung, and S. K. Chang, Phys. Rev. B 45, 8 (1992) [4] T. Yao, M. Kato, J. J. Davies, and H. Tanino, J. Cryst. Growth 86, 552 (1990) [5] I. L. Kuskovsky, C. Tian, G. F. Neumark, J. E. Spanier, I. P. Herman, W. C. Lin, S. P. Guo, and M. C. Tamargo, Phys. Rev. B 63, 155205 (2001) [6] C. S. Yang, D. Y. Hong, C. Y. Lin, W. C. Chou, C. S. Ro, W. Y. Uen, W. H. Lan and S. L. Tu, J. Appl. Phys. 83, 5 (1998) [7] I. V. Akimova, A. M. Akhekyan, V. I. Kozlovsky, Yu. V. Korostelin, and P. V. Shapin, Sov. Phys. Solid State 27, 1041 (1985) [8] S. Permogorov and A. Reznitsky, J. Lumin. 52, 201 (1992) [9] Y. Gu, I. L. Kuskovsky, M. van der Voort, G. F. Neumark, X. Zhou, and M. C. Tamargo, Phys. Rev. B 71, 045340 (2005) [10] K. Suzuki, U. Neukirch, J. Gutowski, N. Takojima, T. Sawada, and K. Imai, J. Cryst. Growth 184/185, 882 (1998) [11] I. L. Kuskovsky, Y. Gu, M. van der Voort, G. F. Neumark, X. Zhou, M. Munoz, and M. C. Tamargo, Phys. Stat. Sol. (b) 241, 527 (2004) [12] T. Y. Lin, D. Y. Lyu, J. Chang, J. L. Shen, W. C. Chou, Appl. Phys. Lett. 88, 121917 (2006) [13] M. Jo, M. Endo, H. Kumano, and I. Suemune, J. Cryst. Growth 301, 277 (2007) [14] M. C.-K. Cheung, A. N. Cartwright, I. R. Sellers, B. D. McCombe, I. L. Kuskovsky, Appl. Phys. Lett. 92, 032106 (2008) [15] A. O. Govorov, S. E. Ulloa, K. Karrai and R. J. Warburton. Phys. Rev. B. 66, 081309(R) (2002) [16] I. R. Sellers, V. R. Whiteside, I. L. Kuskovsky, A. O. Govorov, and B. D. McCombe. Phys. Rev. Lett. 100, 136405 (2008) [17] I. L. Kuskovsky, W. MacDonald, A. O. Govorov, L. Muroukh, X. Wei, M. C. Tamargo, M. Tadic and F. M. Peeters. Phys. Rev. B. 76, 035342 (2007) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37113 | - |
dc.description.abstract | 雖然量子態的絕對相位是不可測量的,但是同調帶電物質波是可被測量的。近年來,磁通量在激子活化能上的效應引起很大的注意。在此論文中,在高達十四特斯拉磁場裡,我們將會呈現在三種不同的二六族半導體奈米結構系統所做的磁光研究的光學性質。在type-II CdTe/CdS/ZnS 奈米粒子系統中,在螢光光譜上的峰值能量及發光強度隨著磁場變化振盪的情形被觀察到,且歸因於類似Aharonov-Bohm 效應。在type-II ZnTe/ZnSe 量子點系統中,我們同時地從不同大小的量子點中觀察到不同的AB週期在同一個系統中,且觀察到雜質或缺陷破壞AB振盪的轉動對襯造成的影響。在Zn-Se-Te 多層系統中,我們同時地在同一個樣品裡從不同的螢光波峰觀察到不同AB振盪行為。 | zh_TW |
dc.description.abstract | Although the absolute phase of a quantum state is not measurable, the relative phase of a coherent charged particle wave could be manipulated. Recently, the effect of the magnetic flux on the excitonic energy has received much attention. In this thesis, we’ll present our magneto-photoluminescence studies on the optical properties of three different II-VI semiconductor nanostructurte systems in magnetic field up to 14 T. In type-II CdTe/CdSe/ZnS nanoparticle system, oscillation on the peak energy of the photoluminescence spectra as well as oscillation in the integrated intensity as a function of magnetic field were observed and are attributed to the optical Aharonov-Bohm-like effect. In type-II ZnTe/ZnSe QDs system, we observed different AB periods from different sizes of quantum dots simultaneously in the same system and also observed the influence caused by impurities or defects breaking the rotational symmetry of AB oscillation. In Zn-Se-Te multilayer system, we observed different AB oscillatory behavior from different PL emission peak of the same sample simultaneously. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:19:26Z (GMT). No. of bitstreams: 1 ntu-97-D92222019-1.pdf: 3367612 bytes, checksum: b2907c230101970a93e34121ebd902cd (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 1. Introduction………………………………………………………1
2. Theory Background………………………………………………6 2.1 Density of state………………………………………………...6 2.2 Lateral confinement……………………………………………7 2.3 Fock-Darwin energy levels…………………………………….7 2.4 Diamagnetic shift………………………………………………8 2.5 Aharonov-Bohm effect………………………………………....9 2.6 Optical Aharono-Bohm effect………………………………...11 2.7 Impurity effects on the Aharonov-Bohm optical siganatures….................................15 3.Sample Structure and Experimental Apparatus and Procedures …………………………………………………………………….26 3.1 Synthesis of CdTe/CdSe/ZnS (core/shell/shell) nanoparticles ………………………………………………………………..26 3.1.1 Introduction…………………………………………..26 3.1.2 Procedure for making CdTe/CdSe/ZnS (core/shell/shell) nanoparticles…………………………………..26 3.1.3 Sample structure……….………………………………27 3.2 ZnTe/ZnSe self-assembled quantum dots system grown by MBE………………………………………………………..28 3.2.1 Introduction……………………………………………28 3.2.2 Sample preparation…………………………………….28 3.3 Zn-Se-Te multilayer system grown by MOCVD…………….29 3.3.1 Introduction…………………………………………….29 3.3.2 Sample preparation……………………………………..30 3.4 Magneto-photoluminescence (magneto-PL) system……........31 3.4.1 Photoluminescence……………………………………..31 3.4.2 Experimental section…………………………………...32 4. CdTe/CdSe/ZnS nanoparticles………………………………….43 4.1 Introduction……………………………………………...43 4.2 Experiment………………………………………………43 4.3 Result and discussion……………………………………44 4.4 Conclusion……………………………………………….51 5. ZnTe/ZnSe self-assembled quantum dots system……………65 5.1 Introduction……………………………………………...65 5.2 Experiment………………………………………………66 5.3 Results and discussion…………………………………...66 5.4 Conclusion……………………………………………….73 6. Zn-Se-Te multilayer system grown by MOCVD……………….86 6.1 Introduction……………………………………………..86 6.2 Experiment……………………………………………...87 6.3 Results and discussion…………………………………...87 6.4 Conclusion……………………………………………….92 7. Conclusions…………………………………………………102 | |
dc.language.iso | en | |
dc.title | 二六族半導體奈米結構之磁光研究 | zh_TW |
dc.title | Magneto-Photoluminescence Studies on II-VI Semiconductor Nanostructure | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳永芳(Yang-Fang Chen),梁啟德(Chi-Te Liang),孫允武(Yuen-Wuu Suen),羅奕凱(Ikai LO) | |
dc.subject.keyword | 磁光,二六族半導體,奈米結構, | zh_TW |
dc.subject.keyword | magneto-photoluminescence,semiconductor,nanostructure,optical AB effect, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-24 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。