請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37080
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 溫良碩(Liang-Saw Wen) | |
dc.contributor.author | Cheng-Shiuan Lee | en |
dc.contributor.author | 李承軒 | zh_TW |
dc.date.accessioned | 2021-06-13T15:18:52Z | - |
dc.date.available | 2008-07-27 | |
dc.date.copyright | 2008-07-27 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-23 | |
dc.identifier.citation | 中文部分:
何春蓀(1975), 台灣地質概論。經濟部中央地質調查所。 江承濂(2002), 鎘銅還原法測定水中硝酸鹽實驗條件優化暨無載流自動分析儀之設計。國立台灣大學海洋研究所碩士論文。 黃國銘(2003), 淡水河系懸浮顆粒與沉積物重金屬之時空及沉降變化之研究。國立台灣大學海洋研究所博士論文。 台北市政府主計處(2006), 台北市統計年報2006。台北市政府。 台北縣政府主計處(2006), 台北縣統計要覽。台北縣政府。 林佩儀(2007), 晚第四紀以來台北盆地沉積物的組成特性。國立台灣大學地質科學研究所碩士論文。 林盈君(2007), 硫酸錳催化靛藍法測氨之研究。國立台灣大學海洋研究所碩士論文。 林哲震(2007), 淡水河口水舌擺盪動力機制之研究。國立中央大學水文科學研究所碩士論文。 馮英哲(2008), 淡水河流域中溶解相鐵之地球化學研究。國立台灣大學海洋研究所碩士論文。 簡怡芳(2008), 海水矽酸鹽測定方法中遮蔽劑之機制研究。國立台灣大學海洋研究所碩士論文。 甯愛華(2008), 以鎘銅還原法測定河口環境中硝酸鹽之干擾與解決之道。國立台灣大學海洋研究所碩士論文。 英文部分: Andren, A.W., Bober, T.W., 2002. Silver in the Environment: Transport, Fate, and Effects. “Research Findings of the Argentum International Conference Series, 1993-2000.”, Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA. Bell, R.A., Kramer, J.R., 1999. Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environmental Toxicology and Chemistry 18 (1), 9-22. Benoit, G.., 1994. Clean technique measurement of Pb, Ag, and Cd in freshwater: A redefinition of metal pollution. Environmental Science and Technology 28 (11), 1987-1991. Benoit, G.., Oktay-Marshall, S.D., Cantu II, A., Hood, E.M., Coleman, C.H., Corapcioglu, M.O., Santschi, P.H., 1994. Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries. Marine Chemistry 45, 307-336. Benoit, G.., Rozan, T.F., 1999. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochimica et Cosmochimica Acta 63 (1), 113-127. Bianchi, T.S., 2007. Trace Metal Cycling, Biogeochemistry of Estuaries, Oxford University Press, New York, NY, USA. Boyle, E.A., Collier, R., Dengler, A.T., Edmond, J.M., NG, A.C., Stallard, R.F., 1974. On the chemical mass-balance in estuaries. Geochimica et Cosmochimica Acta 38 (11), 1719-1728. Boyle, E.A., Edmond, J.M., Sholkovitz, E.R., 1977. The mechanism of iron removal estuaries. Geochimica et Cosmochimica Acta 41 (9), 1313-1324. Bruland, K.W., Franks, R.P., Knauer, G..A., Martin, J.H., 1979. Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Analytica Chimica Acta 105, 223-245. Buck, N.J., Gobler, C.J., Saňudo-Wilhelmy, S.A., 2005. Dissolved trace element concentrations in the East River-Long Island Sound system: Relative importance of autochthonous versus allochthonous sources. Environmental Science and Technology 39 (10), 3528-3537. Donat, J.R., Lao, K.A., Bruland, K.W., 1994. Speciation of dissolved copper and nickel in South San Francisco Bay: a multimethod approach. Analytica Chimica Acta 284, 547-571. Drever, J.I., 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed, Prentice-Hall, New Jersey, USA. Flegal, A.R., Brown, C.L., Squire, S., Ross, J.R.M., Scelfo, G.M., Hibdon, S., 2007. Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. Environmental Research 105, 34-52. Gueguen, C., Belin, C., Thomas, B.A., Monna, F., Favarger, P.-Y., Dominik, J., 1999. The effect of freshwater UV-irradiation prior to resin preconcentration of trace metals. Analytica Chimica Acta 386, 155-159. Honeyman B.D., Santschi, P.H., 1988. Metals in aquatic systems. Environmental Science and Technology 22 (8), 862-871. Howard, A.G., Statham, P.J., 1993. Inorganic Trace Analysis: Philosophy and Practice, John Wiley & Sons, Buffins lane, Chichester, England, pp.19-24. Jiann, K.T., Wen, L.S., Santschi, P.H., 2005. Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the DanShuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry 96, 293-313. Kramer, J.R., Adams, N.W.H., Manolopoulos, H., Collins, P.V., 1999. Silver at an old mining camp, Cobalt, Ontario, Canada. Environmental Toxicology and Chemistry 18 (1), 23-29. Landing, W.M., Lewis, B.L., 1992. In Marine Particles: Analysis and Characterization. American Geophysical Union, Washington, DC, USA. pp.263-272. Luther III, G.W., Theberge, S.M., Rickard, D.T., 1999. Evidence for aqueous clusters as intermediates during zinc sulfide formation. Geochimica et Cosmochimica Acta 63 (19/20), 3159-3169. Martin, J., Meybeck, M., 1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry 7, 173-206. Miller, L.A., Bruland, K.W., 1995. Organic speciation of silver in marine waters. Environmental Science and Technology 29 (10), 2616-2621. O’Connor, D.J., Connolly, J.P., 1980. The effect of concentration and adsorbing solids on the partition coefficient. Water Research 14, 1517-1523. Pai, S.C., Yang, C.C., Riley, J.P., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta 229, 115-120. Pai, S.C., Yang, C.C., Riley, J.P., 1990. Formation kinetics of the pink azo dye in the determination of nitrite in natural water. Analytica Chimica Acta 232, 235-349. Purcell, T.W., Peters, J.J., 1998. Sources of silver in the environment. Environmental Toxicology and Chemistry 17 (4), 539-546. Purcell, T.W., Peters, J.J., 1999. Historical impacts of environmental regulation of silver. Environmental Toxicology and Chemistry 18 (1), 3-8. Rozan, T.F., Benoit, G., Luther III, G.W., 1999. Measuring metal sulfide complexes in oxic river waters with square wave voltammetry. Environmental Science and Technology 33 (17), 3021-3026. Rozan, T.F., Lassman, M.E., Ridge, D.P., Luther III, G.W., 2000. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406, 879-882. Rozan, T.F., Luther III, G.W., 2001. Voltammetric evidence suggesting Ag speciation is dominated by sulfide complexation in river water. Environmental electrochemistry: analyses of trace element biogeochemistry. Oxford University Press, New York, NY, USA, pp.371-380. Rozan, T.F., Hunter, K.S., 2001. Effects of discharge on silver loading and transport in the Quinnipiac River, Connecticut. The Science of the Total Environment 279, 195-205. Saňudo-Wilhelmy, S.A., Flegal, A.R., 1992. Anthropogenic silver in the Southern California Bight: A new tracer of sewage in coastal waters. Environmental Science and Technology 26 (11), 2147-2151. Sanudo-Wilhelmy, S.A., Rivera-Durate, I., Flegal, A.R., 1996. Distribution of colloidal trace metals in the San Francisco Bay estuary. Geochimica et Cosmochimica Acta 60 (24), 4933-4944. Santschi, P.H., Lenhart, J.J., Honeyman, B.D., 1997. Heterogeneous processes affecting trace contaminant distribution in estuaries: the role of natural organic matter. Marine Chemistry 58, 99-125. Shafer, M.M., Overdier, J.T., Armstong, D.E, 1998. Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environmental Toxicology and Chemistry 17 (4), 630-641. Sholkovitz, E.R., 1976. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochimica et Cosmochimica Acta 40 (7), 831-845. Sholkovitz, E.R., 1978. The Flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth and Planetary Science Letters 41, 77-86. Smith, G.J., Flegal, A.R., 1993. Silver in San Francisco Bay estuarine waters. Estuaries 16 (3A), 547-558. Squire, S., Scelfo, G.M., Revenaugh, J., Flegal, A.R., 2002. Decadal trends of silver and lead contamination in San Francisco Bay surface waters. Environmental Science and Technology 36 (11), 2379–2386. Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry, 3rd ed, Wiley-Interscience, New York, USA. Tessier, A., Turner, D.R., 1995. Metal Speciation and Bioavailability in Aquatic Systems. John Wiley & Sons, Baffins Lane, Chichester, England. pp.292. Turekian, K.K., 1971. Elements, geochemical distribution of., Encyclopedia of Science and Technology, vol. 4. McGraw-Hill, New York, NY, USA, pp.627-630. Turner, D.R., Whitfield, M., Dickson, A.G., 1981. The equilibrium speciation of dissolved components in fresh water and seawater at 25℃ and 1 atm pressure. Geochimica et Cosmochimica Acta 45 (6), 855-881. Wang, C.F., Hsu, M.H., Kuo, A.Y., 2004. Residence time of the Danshuei River estuary, Taiwan. Estuarine, Coastal and Shelf Science 60, 381-393. Wen, L.S., Stordal, M.C., Tang, D., Gill, G.A., Santschi, P.H., 1996. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry 55, 129-152. Wen, L.S., Santschi, P.H., Gill, G.A., Paternostro, C.L., Lehman, R.D., 1997a. Colloidal and particulate silver in river and estuarine waters of Texas. Environmental Science and Technology 31 (3), 723-731. Wen, L.S., Santschi, P.H., Tang, D., 1997b. Interactions between radioactively labeled colloids and natural particles: evidence for colloidal pumping. Geochimica et Cosmochimica Acta 61 (14), 2867-2878. Wen, L.S., Santschi, P., Gill, G., Paternostro, C., 1999. Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry 63, 185-212. Wen, L.S., Santschi, P.H., Gill, G.A., Tang, D., 2002. Silver concentration in Colorado, USA, watersheds using improved methodology. Environmental Toxicology and Chemistry 21 (10), 2040-2051. Wen, L.S., Jiann, K.T., Liu, K.K., 2008. Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science 78, 694-704. Zhang, Y., Obata, H., Gamo, T., 2008. Silver in Tokyo Bay estuarine waters and Japanese rivers. Journal of Oceanography 64, 259-265. 網頁部分: The Silver Institute http://www.silverinstitute.org 行政院環境保護署 http://www.epa.gov.tw/index.aspx 環境地理資訊系統 http://edb.epa.gov.tw/epagdc3/ 地方環境資料庫 http://edb.epa.gov.tw/localenvdb/index.asp?theme=blue 全國環境水質資訊網 http://wqshow.epa.gov.tw/ 台北市衛工處 http://www.sew.gov.tw/ 經濟部水利署第十河川局 http://www.wra10.gov.tw/about035.html 經濟部水利署水文水資源資料管理供應系統 http://gweb.wra.gov.tw/wrweb/ 台灣大河百科系列之─淡水河 http://hysearch.wra.gov.tw/wra_ext/river/index.htm | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37080 | - |
dc.description.abstract | 淡水河為北台灣第一大川,山高水急,侵蝕與搬運作用強烈,其三大支流橫貫擁有六百萬人口之大台北都會區。河水中之微量元素物種的存在形式、空間分布以及輸出量,除了受到自然風化的影響,更遭受人為活動的衝擊。本研究利用物理分離方法來分析淡水河中之Ag物種:總溶解態(total dissolved, ≤0.45 μm)、真溶解態(truly dissolved, ≤1 kDa)、膠體(colloidal, 1 kDa ~ 0.1 μm & 0.1 μm ~ 0.45 μm)與顆粒態(particulate, ≥0.45 μm),顆粒樣品更進一步地利用序列酸解法來分離出不同相的Ag物種。
總溶解態Ag在流域水體中的濃度範圍為1.6 ~ 300 pM,在河川上游區段的濃度變化相對較窄(1.6 ~ 7.5 pM),當河川進入都會區時,濃度快速上升至300 pM,反映出人為輸入的影響。Ag於河口區域表現出強烈的移除作用,與Fe的移除行為相當類似。溶解態Ag濃度約有70%以上是屬於1 kDa ~ 0.45 μm的部分,顯示著Ag物種主要以膠體形式存在。在河口地區,伴隨著鹽度上升,膠體所占之比重逐漸下降。顆粒態Ag在水體中的濃度範圍為0.05 ~ 10 μg/g,濃度高低之分佈與總溶解態Ag非常相似,在進入都會區時濃度均急劇攀高。序列酸解之結果顯示出顆粒態Ag幾乎沒有表面吸附相,而有超過80%為鐵錳載體相,礦物晶格相大多出現在溶氧值低之河段,暗示著有自生源硫化礦物生成。 分布係數log Kd約為5.7±0.4,顯示出對於顆粒體的高度親合力。淡水河輸出至海洋的總溶解態Ag通量為0.14 mol/day,自流域中輸入的溶解態Ag約有86%在河口地區被移除。 | zh_TW |
dc.description.abstract | Spatial variations and export loading of Ag in the waters of the Danshuei Tributary were investigated. The Danshuei River is the largest estuary that flows through the city of Taipei, Taiwan. Physical filtration methods were used in this study to define Ag speciation operationally. The following forms were determined: total dissolved (≤0.45 μm), colloidal (1 kDa ~ 0.1 μm, 0.1 μm ~ 0.45 μm), truly dissolved (≤1 kDa), and particulate (≥0.45 μm) fractions. Particulate samples were further separated into different phases by sequential leaching methods. The concentrations of Ag in the total dissolved fraction (≤0.45 μm) ranged from 1.6 to 300 pM. In general, upstream concentrations fell within a fairly narrow range, 1.6 ~ 7.5 pM. Downstream Ag concentrations showed significant increases (~300 pM) as the rivers entering the urban area, indicating the strong impacts of Ag-laden discharge effluents. On average, more than 70% of the 0.45 μm filter-passing Ag was associated with colloidal matter (1 kDa ~ 0.45 μm), decreasing with increasing salinity. All fractions of dissolved Ag exhibited a non-conservative estuarine removal mixing pattern. A strong correlation was found between the colloidal Ag and colloidal Fe concentrations, implying that Fe controlled the removal behavior of Ag in the estuary. The concentrations of particulate Ag in waters ranged from 0.05 to 10 μg/g, and its spatial distribution was very similar to that of the total dissolved Ag. More than 80% of particulate Ag was associated with iron-manganese oxyhydroxide/sulfide phases. The refractory phase was elevated in hypoxic river waters, implying that reduced sulfur minerals such as pyrite were likely formed. The high affinity of Ag to suspended particulates was reflected by a high mean particle/water distribution coefficient of log Kd=5.7±0.4. The export loading flux of dissolved Ag was about 0.14 mol/day. About 86% of the Ag input from whole watershed was removed within the estuary. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:18:52Z (GMT). No. of bitstreams: 1 ntu-97-R95241403-1.pdf: 5041589 bytes, checksum: 8d795f552b26866f9330899757921e2f (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
摘要 i Abstract ii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 微量元素「銀」之地球化學行為 2 1.3.1 銀的來源 2 1.3.2 銀的人為輸入 2 1.3.3 銀在水體中的行為 3 1.4 文獻回顧 4 1.5 研究區域背景資料 4 1.5.1 水系 4 1.5.2 地理與地質環境 5 1.5.3 氣候與水文 5 1.5.4 人口與產業 6 1.5.5 人為輸入 6 第二章 材料與方法 14 2.1 採樣地點與時間 14 2.2 測量項目 15 2.3 採樣方式 15 2.3.1 器材準備與清洗 15 2.3.2 取樣方法 16 2.3.3 樣品前處理 17 2.4 實驗與方析方法 17 2.4.1 藥品與試劑 17 2.4.2 APDC/DDDC溶劑萃取法(APDC/DDDC Solvent Extraction method) 18 2.4.3 交流超微過濾法(Cross-flow Ultra Filtration) 18 2.4.4 序列酸解法(Sequential Leaching method) 19 2.4.5 石墨爐式原子吸光儀(Graphite Furnace Atomic Absorption Spectrometer) 20 2.4.6 其他分析方法 21 第三章 結果 34 3.1 Ag濃度與物種變化初探 34 3.2 基本水文參數 34 3.2.1 雨量與溫度(Precipitation & Temperature) 35 3.2.2 導電度與鹽度(Conductivity & Salinity) 35 3.2.3 pH值 35 3.2.4 濁度與懸浮顆粒(Turbidity & SPM) 35 3.2.5 溶氧(Dissolved Oxygen, DO) 36 3.3 營養鹽與其他化學參數 36 3.3.1 總溶解態無機氮(Dissolved Inorganic Nitrogen, DIN) 36 3.3.2 溶解態磷酸鹽(Dissolved Phosphate, PO4) 37 3.3.3 溶解態矽酸鹽(Dissolved Silicate, Si(OH)4) 37 3.4 微量元素Ag之空間分布與物種變化 37 3.4.1 總溶解Ag的空間分布 37 3.4.2 總溶解態Ag的物種變化 38 3.4.3 顆粒態Ag的空間分布 39 3.4.4 顆粒態Ag的物種變化 40 第四章 討論 58 4.1 人為活動之輸入 58 4.2 溶解態Ag物種之區域變化 59 4.3 分布係數 60 4.4 氧化還原與物種變化 62 4.5 河口混合之行為 63 4.5.1 Ag移除現象 63 4.5.2 Ag的輸出與移除通量 64 第五章 結論 83 參考文獻 85 附錄 92 | |
dc.language.iso | zh-TW | |
dc.title | 淡水河流域銀之物種變化與空間分布 | zh_TW |
dc.title | Speciation and Distribution of Silver in the Danshuei River Watershed | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 魏慶琳(Ching-Ling Wei),簡國童(Kuo-Tung Jiann) | |
dc.subject.keyword | 銀,物種變化,空間分布,淡水河,通量, | zh_TW |
dc.subject.keyword | Ag,speciation,spatial distribution,Danshuei River,flux, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-24 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 4.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。