請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37074完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Tuan-Hao Chen | en |
| dc.contributor.author | 陳端浩 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:18:46Z | - |
| dc.date.available | 2011-08-16 | |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-11 | |
| dc.identifier.citation | [1] Kandel ER, H J, Schwartz, M T, Jessell, Mack S, et al. Principles of neural science. Book. 2000.
[2] Terese W , Caitlin D. Rebuilding the Nervous System with Stem Cells , Stem cell information 2001 [3] Lee SK, Wolfe SW. Peripheral nerve injury and repair. J Am Acad Orthop Surg. 2000;8:243-52. [4] Johnson EO, Soucacos PN. Nerve repair: Experimental and clinical evaluation of biodegradable artificial nerve guides. Int J Care Injured 2008. [5] Yao L, O'Brien N, Windebank A, Pandit A. Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res B Appl Biomater. 2009;90:483-91. [6] Lanza RP, Langer R, and Vacanti JP. Principles of tissue engineering. Academic press. (2000);56:785-798. [7] Deumens R, Bozkurt A, Meek MF, Marcus MA, Joosten EA, Weis J, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol. 2010;92:245-76. [8] Grant, Blair HS, Mckay. G. Water-soluble derivatives of chitosan. Polymer Communications. 1998;29,342-344. . [9] Sayed ZE, Essam S, Hebeish A. Controlling chitosan molecular weight via bio-chitosanolysis. Carbohydrate Polymers 2010;539–542. [10] Lim SH. Synthesis of a fiber-reactive chitosan derivative and its application to cotton fabric as an antimicrobial finish and a dyeing-improving agent. Fiber and Polymer Science 2002;1–18. [11] Hirano S, Tsuchida H, Nagao N. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials. 1989;10:574-6. [12] Jung B-O, Kim C-H, Choi K-S, Lee YM, Kim J-J. Preparation of Amphiphilic chitosan and Their Antimicrobial Activities. Journal of Applied Polymer Science 1999. [13] A.Domarda,M.Rinaudoa. Preparation and characterization of fully deacetylated chitasan. Int J Biol Macromol. 1983;5(2), 49-52 [14] Kurita K.. Chemistry and application of chitin and chitosan. Polymer Degradation and Stability. 1998;59;17-120 [15] K.V. Harish Prashantha, R.N. Tharanathan. Chitin/chitosan modifications and their unlimited application potentiald-an overview. Trends in Food Science & Technology 2007;117-131. [16] W Huang. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2002;4:311-4. [17] Xiefei Zhang,Tao Liu,T.V. Sreekumar,Satish Kumar,Valerie C. Moore . Poly(vinyl alcohol)/SWNT composite film. Nano Lett 2003;3:1285-8. [18] Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006;6:1522-8. [19] Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: A review Polymer Degradation and Stability 2010;2126-2146. [20] Woolley AT, Cheung CL, Hafner JH, Lieber CM. Structural biology with carbon nanotube AFM probes. Chem Biol. 2000;7:R193-204. [21] Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59:740-7; discussion 7-8. [22] Verdu E, Labrador RO, Rodriguez FJ, Ceballos D, Fores J, Navarro X. Alignment of collagen and laminin-containing gels improve nerve regeneration within silicone tubes. Restor Neurol Neurosci. 2002;20:169-79. [23] de Ruiter GC, Onyeneho IA, Liang ET, Moore MJ, Knight AM, Malessy MJ, et al. Methods for in vitro characterization of multichannel nerve tubes. J Biomed Mater Res A. 2008;84:643-51. [24] Nakamura T, Inada Y, Fukuda S, Yoshitani M, Nakada A, Itoi S, et al. Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube. Brain Res. 2004;1027:18-29. [25] Sinis N, Schaller HE, Schulte-Eversum C, Schlosshauer B, Doser M, Dietz K, Rosner H, Muller HW, Haerle M. Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. J Neurosurg 2005;103:1067-1076. [26] Lee AC, Yu VM, Lowe JB, 3rd, Brenner MJ, Hunter DA, Mackinnon SE, et al. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol. 2003;184:295-303. [27] Jun SB, Hynd MR, Smith KL, Song JK, Turner JN, Shain W, et al. Electrical stimulation-induced cell clustering in cultured neural networks. Med Biol Eng Comput. 2007;45:1015-21. [28] Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30:4325-35. [29] de Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus. 2009;26:E5. [30] 廖文炫, 張梅蘭, 蔡美文, 王淑芬. 物理因子治療學- 電磁療學. 合記圖書出版社. 2001. [31] Changeux JP, Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976;264:705-12. [32] Simon & Schuster. Foundations of physiological psychology. (1992) pp.48 [33] Okouchi M, Okayama N, Aw TY. Differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of cellular redox. Curr Neurovasc Res. 2005;2:13-22. [34] Mahoney MJ, Chen RR, Tan J, Saltzman WM. The influence of microchannels on neurite growth and architecture. Biomaterials. 2005;26:771-8. [35] Cheng H, Huang YC, Chang PT, Huang YY. Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury. Biochem Biophys Res Commun. 2007;357:938-44. [36] 張簡政倫. 奈米碳管/幾丁聚醣複合材料於神經組織工程之應用 2010 [37] Min L.T., Rong H.C. Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan . Journal of Applied Polymer Science 2003 : 3526–3531 [38] Hoon J., Sang B. J. , Jong K. S. , Sung J. K. . Activity-dependent neuronal cell migration induced by electrical stimulation . Medical and Biological Engineering 2008 :1007-1114 [39] Ji Sun Park , Kyeongsoon P., Hyun T. M., Dae G. W., Han N. Y., . Electrical Pulsed Stimulation of Surfaces Homogeneously Coated with Gold Nanoparticles to Induce Neurite Outgrowth of PC12 Cells . Langmuir 2009, 25, 451-457 [40] Zompa E. A., Pizzo D. P., Hulsebosch C. E. . Migration and Differentiation of PC12 Cells transplanted into the rat spinal cord. Devl Neuroscience,Vol. 11, No. 5, pp.535-544,1993. [41] Dowell N., Abdul K., Turner A., Schanz S., Craighead H.G., Roysam B., Turner J., Shain W. .Topographically modified surfaces affect orientation and growth of hippocampal neurons . J. Neural Eng. 1 (2004) 78–90 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37074 | - |
| dc.description.abstract | 神經導管是一種很有潛力能夠替代自體神經移植修復的方法,可當作斷裂神經兩端接口處的橋樑,引導斷裂神經的修復過程。而藉由低頻電流刺激能夠使神經細胞的膜電位與離子通透性改變並增加神經衝動(nerve impulse)的發生機會,進而促進神經細胞再生的說法亦在許多研究中被證實,若結合上述兩種假設,我們預期能夠得到更好的神經修復效果。
本研究中利用共凝集法(coagulation)製備直徑約為200μm的多壁奈米碳管/幾丁聚醣纖維,此複合材料纖維具有良好的導電性、生物相容性、生物分解性等優點,適合應用於電刺激促進神經再生之研究。經過各種材料性質之評估後,選用0.5wt% 多壁奈米碳管/2wt% 幾丁聚醣製備之纖維作為體外實驗之材料,於體外實驗中將材料與PC12類神經細胞共同培養藉以評斷神經再生之效果,實驗中控制參數為頻率20Hz、duty time為50%、刺激時間為每天一小時,分別施加直流與交流電流等刺激方式,並觀察電刺激對於細胞生長與分化之影響。 在體外生物相容性評估的結果顯示,多壁奈米碳管/幾丁聚醣纖維能夠提供細胞良好的生長環境,並於電刺激實驗中量化的數據證實,電刺激治療後神經細胞突觸之平均長度與生長方向都有顯著的差異,而使用正弦交流電對細胞於體外施加電刺激治療時,其促進細胞生長與分化的效果都明顯優於直流電流刺激的治療,因此評估使用正弦交流電刺激於神經導管的應用中能夠達到良好的促進神經再生效果。 | zh_TW |
| dc.description.abstract | Nerve conduit is a method with potential to replace autologous nerve grafts, serving as the bridge to connect interface of two fracture nerves, and conducting the repairing procedure of the fracture nerves. It is also verified by many researches that by the low-frequency electrical stimulation, the cell membrane potential and permeability will change and possibility of nerve impulse will increase and further facilitate the nerve cell regenerating. If combining the assumptions stated above, it is expected to get better result of the nerve repairing.
In this research, coagulation method is used to make the multi-walled carbon nanotube(MWCNT)/ chitosan compound fiber with the diameter in around 200μm and because the chitosan fiber equips with several advantages including conductivity, biocompatibility, Biodegradable and so on, it is suitable to be applied in the research of how the electricity stimulation facilitate the nerve regeneration.Through the evaluation of different kinds of materials, 0.5wt% MWCNT/ 2wt% chitosan compound is selected as the materials for the in vitro experiment, and the materials and the PC12 cell are co-cultured to evaluate the result of the nerve regeneration. In the experiment, the control parameters are as the following: 20Hz frequency, 50% duty time, one hour stimulation time per day by implementing of the direct current(DC) / alternating current(AC) electricity separately to observe the effect of electricity stimulation to the cell generation. The result of evaluating the biocompatibility in vitro manifests that multi-walled carbon nanotube/chitosan can provide the cells a great environment to grow up and it is verified that the median neurite length and the direction of growing up have obvious difference after the electricity stimulation experiment, and achieve the great result of the nerve regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:18:46Z (GMT). No. of bitstreams: 1 ntu-100-R98548035-1.pdf: 3181539 bytes, checksum: 7c2a3160bea030a39b3443be0f269733 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 .......................................................................................................................……I
摘要 ............................................................................................................................ II ABSTRACT ....................................................................................................................III 目錄 ........................................................................................................................... IV 圖目錄 ......................................................................................... .............................VII 表目錄..................................................................................................................... IX 第一章 序論 .............................................................................................................1 1.1 周邊神經的修復與再生 ......................................................................................1 1.1-1 神經系統 ......................................................................................................1 1.1-2 周邊神經損傷的治療................................................................................... 4 1.1-3 周邊神經損傷後的修復過程..........................................................................4 1.2 幾丁質與幾丁聚醣.............................................................................................. .5 1.2-1 幾丁質/幾丁聚醣的來源與簡介................................................................... 5 1.2-2 幾丁質/幾丁聚醣的結構................................................................................ 6 1.2-3 幾丁質/幾丁聚醣具有之特性與應用.............................................................7 1.3 奈米碳管 .............................................................................................................10 1-4 組織工程 .............................................................................................................11 1.4-1 神經導管 .....................................................................................................11 1.4-2 低頻電刺激的基本原理…..............................................................................13 1.5 PC12 細胞株 ...................................................................................................... 15 1.6 研究動機與目的 ............................................................................................... 16 第二章 實驗材料與方法......................................................................................... 18 2.1 實驗藥品............................................................................................................ 18 2.2 實驗儀器............................................................................................................ 19 2.3 奈米碳管的純化製備........................................................................................ 20 2.4 奈米碳管/幾丁聚醣薄膜的製備...................................................................... 21 2.5 奈米碳管/幾丁聚醣纖維的製備...................................................................... 21 2.6 材料之澎潤度測試實驗................................................................................... 23 2.7 四點探針-材料電性分析.................................................................................. 23 2-8循環伏安法測試............................................................................................... 24 2.9 氧氣電漿法之表面改質................................................................................….25 2.10 利用掃描式電子顯微鏡(SEM)觀察細胞型態............................................….25 2.11 細胞實驗........................................................................................................ 25 2.11-1 PC12細胞之繼代培養.................................................................................25 2.11-2 PC12細胞之誘導分化................................................................................ 26 2.11-3 細胞生物相容性分析................................................................................. 27 2.11-4細胞貼附率實驗......................................................................................... 27 2.11-5 DII & Hoechst 33342細胞染色法............................................................... 28 2.11-6 細胞免疫螢光染色法................................................................................ 28 2.12細胞體外電刺激實驗.................................................................................... 29 2.13 細胞軸突成長之方向分析與量化法........................................................... 31 2.13-1 神經突平均長度分析.............................................................................. 31 2.13-2 神經突之方向性..................................................................................... 32 第三章 結果與討論............................................................................................. 33 3.1 多壁奈米碳管/幾丁聚醣纖維之製備........................................................... 33 3.2 多壁奈米碳管/幾丁聚醣纖維之結構分析................................................... 34 3.3流速對於纖維直徑之影響............................................................................. 36 3.4 材料性質分析............................................................................................... 37 3.4-1 澎潤度分析................................................................................................ 38 3.4-2 電性質分析............................................................................................... 39 3.5 細胞與材料間行為之探討............................................................................. 41 3.5-1 Naive PC12 與 Differentiated PC12細胞培養............................................ 41 3.5-2 材料接枝層粘連蛋白對細胞貼附率的影響.............................................. 45 3.5-3 比較不同濃度多壁奈米碳管對細胞活性的影響...................................... 46 3.6 以免疫螢光染色法觀察細胞與材料間交互作用....................................... 47 3.7 電刺激裝置架設與刺激方法......................................................................... 49 3.7-1 電刺激治療對體外培養之PC12細胞平均軸突長度的影響……………………50 3.7-2 電刺激治療對體外培養之PC12細胞軸突延伸之方向性的影響……………57 第五章 參考文獻................................................................................. ……………..60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電刺激 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | PC12 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | Chitosan | en |
| dc.subject | Electrical stimulation | en |
| dc.subject | PC12 | en |
| dc.subject | Carbon nanotubes | en |
| dc.title | 奈米碳管/幾丁聚醣之導電複合材料結合電刺激於PC12細胞生長與分化之影響 | zh_TW |
| dc.title | Application of Carbon Nanotube/Chitosan composites by the electrical stimulation in the Proliferation and Differentiation of PC12 Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文(Tze-Wen Chung),黃意真(Yi-Cheng Huang) | |
| dc.subject.keyword | 奈米碳管,幾丁聚醣,電刺激,PC12, | zh_TW |
| dc.subject.keyword | Carbon nanotubes,Chitosan,Electrical stimulation,PC12, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
