Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37059
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益
dc.contributor.authorYen-Nung Leeen
dc.contributor.author李硯農zh_TW
dc.date.accessioned2021-06-13T15:18:32Z-
dc.date.available2009-07-26
dc.date.copyright2008-07-26
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation[1] E. Hjelmas, B.K. Low, “Face Detection: A Survey,” Computer Vision and Image Understanding, pp.263-274, 2001.
[2] Y.L. Tian, K. Kanade, J.F. Cohn, “Recognition Action Units for Facial Expression Analysis,” Pattern Analysis and Machine Intelligence, pp.97-115, 2001.
[3] J. Ahlberg, “Facial Feature Extraction using Deformable Graphs and Statistical Pattern Matching,” Laboratorire Heudiasyc UMR CNRS 6599, Universite de Technologie de Compiegne, Centre de Recherches de Royallieu, BP 20529, FR-60205 Compiegne, France.
[4] D.A. Rowland, D.I. Perret, D.M. Burt, K.J. Lee, S. Akamatsu, ”Transforming Facial Images in 2 and 3-D,” Conference of Imagina 97, pp.159-175, 1997.
[5] 江佩穎, 李蔡彥, 廖文宏, ”以臉部特徵為基礎之誇張肖像畫產生系統,” 中華民國全國計算機會議, 2003.
[6] 楊志耀, ”基於人臉影像與臉譜特徵向量之二維卡通臉譜產生系統,” 國立台灣海洋大學資訊科學系碩士論文, 2003.
[7] H. Chen, L. Liang, Y. Li, Y.Q. Xu, H.Y Shum, “PicToon: A Personalized Image-based Cartoon System,” ACM Multimedia, pp.171-178, 2002.
[8] B.W. Hwang, V. Blanz, T. Vetter, S.W. Lee, “Face Reconstruction from as Small Number of Feature Points,” Pattern Recognition, pp.842-845, 2000.
[9] S. Brennan, “Caricature Generator,” Master’s thesis, Cambridge, MIT, 1982.
[10] E. Akleman, “Making Garicature with Morphing,” Visual Proceedings of ACM SIGGRAPH’97, pp.145, 1997.
[11] H. Koshimizu, M. Tominaga, T. Fujiwara, K. Murakami, “On Kansei Facial Processing for Computerized Facial Caricaturing System Picasso,” Systems, Man, and Cybernetics, pp.294-299, 1999.
[12] M. Tominaga, S. Fukuoka, K. Murakami, and H. Koshimizu, “Facial Caricaturing with Motion Caricaturing in Picasso System,” International Conference on Advanced Intelligent Mechatronics, pp.30, 1997.
[13] R.J. Baron, “Mechanisms of Human Facial Recognition,” Int. J. Man-Machine Studies, 1981.
[14] R. Chellapa, C. Wilson, S. Sirohey, “Human and Machine Recognition of Face: A Survey,” Proceedings of the IEEE, pp.705–741, 1995.
[15] R. Brunelli, T. Poggio, “Face Recognition: Feature Versus Templates,” Pattern Analysis and Machine Intelligence, pp.1042–1052, 1993.
[16] M. Turk, A. Pentland, “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, pp.71–86, 1991.
[17] P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection,” Pattern Analysis and Machine Intelligence, pp.711-720, 1997.
[18] B. Moghaddam, A. Pentland, “Face Recognition using View-Based and Modular Eigenspaces,” Automatic Systems for the Identification and Inspection of Humans, pp.12-21, 1994.
[19] Z. Hafed M. Levine,“Face Recognition using Discrete Cosine Transform, ” International Journal of Computer Vision, pp.167-188, 2001.
[20] Z. Pan, R. Adams, H. Bolouri, “Dimensionality Reduction of Face Images using Discrete Cosine Transforms for Recognition,” Computer Vision and Pattern Recognition, 2000.
[21] J. Zhu, M.I. Vai, P.U. Mak, “ Face Recognition using 2D DCT with PCA,” The 4nd Chinese Conference on Biometric Recognition, 2003.
[22] G. Guo, S. Li, C. Kapluk, “Face Recognition by Support Vector Machines,”, Automatic Face and Gesture Recognition, pp.196–201, 2000.
[23] G. Guo, S.Z. Li, K.L. Chan, “Support Vector Machines for Face Recognition,” Journal of Image and Vision Computing, pp.631–638, 2001.
[24] B. Heisele, P. Ho, J. Wu, T. Poggio, “Face Recognition: Component-Based Versus Global Approaches,” Computer Vision and Image Understanding, pp.6–21, 2003.
[25] 吳瑞珍, “人臉特徵自動抽取之演算法設計與應用,” 元智大學電機工程研究所碩士論文, 2002.
[26] 曾郁展, “DSP-Based之即時人臉辨識系統,” 國立中山大學電機工程學系碩士論文, 2005.
[27] C. Lin, K.C. Fan, “Human Face Detection using Geometric Triangle Relationship,” Pattern Recognition, pp.941-944, 2000.
[28] H. Kang, T.F. Cootes, C.J. Taylor, “A Comparison of Face Verification Algorithms using Appearance Models,” British Machine Vision Conference, pp.477-486, 2002.
[29] D. Reisfed, Y. Yeshuran, “Robust Detection of Facial Features by Generalized Symmetry,” Pattern Recognition, pp.117-120, 1992.
[30] A. M. Altter, S.A. Rajala, “Facial Feature Localization in Front View Head and Shoulders Images,” Acoustic, Speech, and Signal Processing, pp.3557-3560, 1999.
[31] H. Saji, H. Nakatani, “Motion Tracking of The Facial Components using Constraints by The Facial Muscles,” Robot and Human Communication, pp.368-373, 1997.
[32] Z. Ruttkay, H. Noot, “Animated Cartoon Faces,” Non-Photorealistic Animation and Rendering, pp.91–100, 2000.
[33] Yahoo!奇摩造型精靈, http://tw.avatar.yahoo.com/.
[34] 春水堂大頭玩, http://www.myplay.com.tw/.
[35] C.C. Chang, C.J. Lin, “Libsvm: A Library for Support Vector Machines,” Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 2001.
[36] 黃群凱, “個人卡通臉譜繪畫風格轉換與誇張化技術之探討,” 國立台灣海洋大學資訊工程系碩士論文, 2006.
[37] T. Kawaguchi, D. Hidaka, M. Rizon, “Detection of Eyes from Human Faces by Hough Transform and Separability Filter,” Image Process, pp.49-52, 2000.
[38] P. Peer, F. Solina, “An Automatic Human Face Detection Method,” Computer Vision Winter Workshop, pp.122-130, 1999.
[39] T. Coianiz, L. Torresani, B. Caprile, “2D Deformable Models for Visual Speech Analysis,” NATO Advanced study Institute: Speech reading by Man and Machine, pp.391-398, 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37059-
dc.description.abstractWii是目前當紅的遊樂器之一,而Mii頻道卡通肖像產生系統正為Wii受到矚目的重要原因之一。然而一般在使用Mii製作人像的時候,必須一個一個元件去選取,過程相當繁瑣及耗時,因此,我們想到如果可以結合影像處理的技術,整合人臉識別及圖形比對的流程,將人臉圖像經過識別之後,自動產生與原圖相似的Mii肖像,應該會是一個有趣且實用的研究議題。本論文將整個人臉產生的過程分為兩個部分,在影像前處理部分,首先對輸入的大頭照影像利用膚色空間轉換作擷取,在人臉範圍內針對不同的特性分別找出眉毛、眼睛、鼻子及嘴巴等元件,接著再利用彩色影像二值化、垂直與水平投影及邊緣偵測等影像處理演算法,標定每個人臉元件的特徵點。接下來將標記好的特徵點資料運算得到每個元件之特徵值,配合經由人臉資料集訓練過之支援向量機(Support Vector Machine)分類器,依據每個元件的特徵值找出該元件所屬類別,也就是與原始人臉影像最相似的Mii元件圖案,最後輸出完整的Mii肖像,完成整個系統。本研究實際開發出一個人臉圖像自動產生出Mii卡通圖形的系統,並以多張實際人臉影像作測試。實驗結果顯示,所提出的系統能夠有效根據真實人臉影像中各元件的特徵值,透過SVM分類器的選擇,找出與原圖相似的Mii圖案。zh_TW
dc.description.abstractWii is one of the most popular TV game consoles at present. It contains a fabulous cartoon portrait system called “Mii”. When we use Mii to produce a cartoon portrait, we need to choose all facial features (such as eyes, nose, mouth, et al.) step by step. This procedure is complicated and may not achieve an acceptable result even spending lots of time. Thus, we think it will be an interest and practical topic if we can utilize face recognition and pattern matching techniques to generate the related Mii portrait from a given photo. We separate the main procedure into two parts. In the pre-processing part, we process the input image to find facial features such as eyes, eyebrows, nose, and mouth. Then we use image process algorithms to locate the feature points on each facial feature. We calculate feature values by using these feature points, and input them to the SVM classifier, which has already trained by many portrait/photo samples, to classify what kind of Mii portrait is the most similar to the original photo. In this thesis, we have developed a system that can generate the related Mii portrait from a given photo automatically. Experimental results show that our proposed system can availably find a Mii portrait which is similar to the original photo.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:18:32Z (GMT). No. of bitstreams: 1
ntu-97-R95525020-1.pdf: 2842001 bytes, checksum: 59e2c639f53a2c9b48060cdbf85fadd9 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 II
誌謝 III
摘要 III
Abstract IV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 相關研究 4
2.1 Mii頻道似顏繪系統 4
2.2 人臉影像產生之應用 5
2.2.1 人臉影像卡通化 6
2.2.2 人臉影像誇張化 8
2.3 SVM在人臉辨識上之應用 11
第三章 系統架構 13
3.1 影像前處理階段 14
3.2 SVM訓練學習與分類選擇階段 15
第四章 人臉影像前處理 18
4.1 人臉範圍擷取 18
4.1.1 膚色色彩分析與過濾 19
4.1.2 人臉範圍擷取與調整 21
4.2 Mii人臉元件定位 22
4.2.1 眼睛定位 22
4.2.2 嘴巴定位 25
4.2.3 眉毛與鼻子定位 26
4.3 人臉元件特徵點與特徵值之定義與選取 29
4.3.1臉型特徵點與特徵值 29
4.3.2 眼睛特徵點與特徵值 32
4.3.3 眉毛特徵點與特徵值 34
4.3.4 嘴巴特徵點與特徵值 36
4.3.5 鼻子特徵點與特徵值 39
第五章 系統實作與實驗結果 42
5.1 SVM簡介 42
5.2 雛型系統實作 45
5.2.1 人臉影像前處理模組 46
5.2.2人臉元件分類選擇模組 47
5.3 實驗結果 50
5.3.1綜合結果與分析 50
5.3.2實驗範例與相似度評量 51
第六章 結論與未來研究 58
參考文獻 60
dc.language.isozh-TW
dc.subjectMiizh_TW
dc.subject人臉識別zh_TW
dc.subject圖像產生zh_TW
dc.subject圖形比對zh_TW
dc.subjectSVM分類器zh_TW
dc.subjectWiizh_TW
dc.subjectFace Recognitionen
dc.subjectMiien
dc.subjectWiien
dc.subjectSVM Classificationen
dc.subjectPattern Matchingen
dc.subjectPortrait Generationen
dc.titleWii遊樂器之Mii頻道人像自動產生研究zh_TW
dc.titleAutomatic Generation of Cartoon Faces for Wii Mii Channelen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡進發,丁肇隆,王家輝
dc.subject.keyword人臉識別,圖像產生,圖形比對,SVM分類器,Wii,Mii,zh_TW
dc.subject.keywordFace Recognition,Portrait Generation,Pattern Matching,SVM Classification,Wii,Mii,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2008-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved