請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37054
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高文媛 | |
dc.contributor.author | Han-Ling Huang | en |
dc.contributor.author | 黃涵靈 | zh_TW |
dc.date.accessioned | 2021-06-13T15:18:28Z | - |
dc.date.available | 2008-08-31 | |
dc.date.copyright | 2008-07-27 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-25 | |
dc.identifier.citation | 佐佐木舜一。1928。台灣植物名彙。臺灣博物學會。台北市。
侯金日, 王淑敏。2000。水分及鹽分逆境對不同來源之大花咸豐種子之發芽效應。植物種苗。2:119-114。 侯金日, 楊雅斯, 王淑敏。1999a。不同光質對兩種鬼針屬 (Bidens) 植物種子發芽之影響。中華民國雜草學會會刊。20:39-54。 侯金日, 楊雅斯, 王淑敏。1999b。咸豐草 (Bidens pilosa L.) 及大花咸豐草 (Bidens pilosa L. var. radiata Sch.) 開花後不同天數之種子大小及發芽特性。20:61-65。 徐玲明, 林訓仕。2005。三種鬼針草植株、種子外觀形態及發芽率之比較。中華民國雜草學會會刊。26:33-42。 徐曉玫。2006。大花咸豐草對鬼針的競爭優勢及入侵性探討。碩士論文。國立臺灣大學。台北市。 彭鏡毅。1976。台灣菊科植物的系統分類與染色體之研究。碩士論文。國立台灣大學。台北市。 蔣慕琰, 徐玲明, 袁秋英, 陳富永, 蔣永正。2003。台灣外來植物之危害與生態。小花蔓澤蘭危害與管理研討會專刊,頁97-109。 鄧書麟。2003。台灣鬼針屬 (菊科) 植物分類與遺傳變異之研究。碩士論文。國立嘉義大學。嘉義市。 Alpert, P., E. Bone, and C. Holzapfel. 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology Evolution and Systematics 3:52-66. Angert, A. L. 2006. Growth and leaf physiology of monkeyflowers with different altitude ranges. Oecologia 148:183-194. Arevalo, J. R., J. D. Delgado, R. Otto, A. Naranjo, M. Salas, and J. M. Fernandez-Palacios. 2005. Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspectives in Plant Ecology Evolution and Systematics 7:185-202. Atkin, O. K., B. Botman, and H. Lambers. 1996. The causes of inherently slow growth in alpine plants: An analysis based on the underlying carbon economies of alpine and lowland Poa species. Functional Ecology 10:698-707. Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology 53:997-1010. Baker, H. G. 1974. The evolution of weeds. Annual Reviews in Ecology and Systematics 5:1-24. Beerling, D. J. and W. G. Chaloner. 1993. The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur lammas leaves. Annals of Botany 71:231-235. Brock, M. T. and C. Galen. 2005. Drought tolerance in the alpine dandelion, Taraxacum ceratophorum (Asteraceae), its exotic congener T. officinale, and interspecific hybrids under natural and experimental conditions. American Journal of Botany 92:1311-1321. Cordell, S., G. Goldstein, D. Mueller-Dombois, D. Webb, and P. M. Vitousek. 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113:188-196. Cumming, G. S. 2002. Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83:255-268. Evans, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9-19. Evans, J. R. and H. Poorter. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment 24:755-767. Fanizza, G., L. Ricciardi, and C. Bagnulo. 1991. Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica 55:27-31. Friend, A. D. and F. I. Woodward. 1990. Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research 20:59-124. Gitz, D. C. and L. Liu-Gitz. 2003. How do UV photomorphogenic responses confer water stress tolerance? Photochemistry and Photobiology 78:529-534. Hall, M. C. and J. H. Willis. 2006. Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations. Evolution 60:2466-2477. Horton, J. L. and H. S. Neufeld. 1998. Photosynthetic responses of Microstegium vimineum (Trin.) A. Camus, a shade-tolerant, C4 grass, to variable light environments. Oecologia 114:11-19. Kao, W. Y. and K. W. Chang. 2001. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. Australian Journal of Botany 49:509-514. Kofidis, G., A. M. Bosabalidis, and M. Moustakas. 2003. Contemporary seasonal and altitudinal variations of leaf structural features in Oregano (Origanum vulgare L.) . Annals of Botany 92:635-645. Korner, C. and P. Cochrane. 1983. Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecologica-Oecologia Plantarum 4:117-124. Korner, C., P. Bannister, and A. F. Mark. 1986. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69:577-588. Ledig, F. T. and D. R. Korbobo. 1983. Adaptation of sugar maple populations along altitudinal gradients: photosynthesis, respiration, and specific leaf weight. American Journal of Botany 70:256-265. Leite, G. L. D., M. Picanco, R. N. C. Guedes, and L. Skowronski. 1999. Effect of fertilization levels, age and canopy height of Lycopersicon hirsutum on the resistance to Myzus persicae. Entomologia Experimentalis et Applicata 91:267-273. Lenssen, A. W., J. D. Banfield, and S. D. Cash. 2001. The influence of trichome density on the drying rate of alfalfa forage. Grass and Forage Science 56:1-9. Liu, F. and H. Stutzel. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae 102:15-27. Luo, J. X., R. G. Zang, and C. Y. Li. 2006. Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China. Forest Ecology and Management 221:285-290. Makela, A., F. Berninger, and P. Hari. 1996. Optimal control of gas exchange during drought: theoretical analysis. Annals of Botany 77:461-467. Mariko, S., H. Koizumi, J. Suzuki, and A. Furukawa. 1993. Altitudinal variations in germination and growth responses of Reynoutria japonica populations on Mt Fuji to a controlled thermal environment. Ecological Research 8:27-34. Maron, J. L. and M. Vila. 2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361-373. Marquard, R. D. and J. L. Tipton. 1987. Relationship between extractable chlorophyll and an in situ method to estimate leaf greenness. HortScience 22:1327-1327. Martin, R. E., G. P. Asner, and L. Sack. 2007. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151:387-400. Massacci, A., M. A. lannelli, F. Pietrini, and F. Loreto. 1995. The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves. Journal of Experimental Botany 46:119-127. McWilliams, E. L., R. Q. Landers, and J. P. Mahlstede. 1968. Variation in seed weight and germination in populations of Amaranthus retroflexus L. Ecology 49:290-296. Neuffer, B. 1990. Ecotype differentiation in Capsella. Plant Ecology 89:165-171. Oleksyn, J., J. Modrzynski, M. G. Tjoelker, R. Zytkowiak, P. B. Reich, and P. Karolewski. 1998. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology 12:573-590. Parks, C. G., S. R. Radosevich, B. A. Endress, B. J. Naylor, D. Anzinger, L. J. Rew, B. D. Maxwell, and K. A. Dwire. 2005. Natural and land-use history of the Northwest mountain ecoregions (USA) in relation to patterns of plant invasions. Perspectives in Plant Ecology Evolution and Systematics 7:137-158. Password, F. 1999. Effects of environmental stress on leaf hair density and consequences for selection. Journal of Evolutionary Biology 12:1089-1103. Peng, C.-I., K.-F. Chung and H.-L. Li. 1998. Compositae. In: Huang, T.-C. and Editorial Committee of the Flora of Taiwan. (eds.), Flora of Taiwan Vol. 4. 2nd ed. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan university, Taipei, Taiwan. pp. 868-870. Pysek, P., V. Jarosik, and T. Kucera. 2002. Patterns of invasion in temperate nature reserves. Biological Conservation 104:13-24. Rambuda, T. D. and S. D. Johnson. 2004. Breeding systems of invasive alien plants in South Africa: does Baker's rule apply? Diversity & Distributions 10:409-416. Reich, P. B., M. G. Tjoelker, M. B. Walters, D. W. Vanderklein, and C. Buschena. 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology 12:327-338. Rice, K. J., R. A. Black, G. Radamaker, and R. D. Evans. 1992. Photosynthesis, Growth, and biomass allocation in habitat ecotypes of cheatgrass (Bromus tectorum). Functional Ecology 6:32-40. Richardson, D. M., P. Pysek, M. Rejmanek, M. G. Barbour, F. D. Panetta, and C. J. West. 2000. Naturalization and invasion of alien plants: Concepts and definitions. Diversity and Distributions 6:93-107. Siam, A. M. J., K. M. Radoglou, B. Noitsakis, and P. Smiris. 2008. Physiological and growth responses of three Mediterranean oak species to different water availability regimes. Journal of Arid Environments 72:583-592. Stefanowska, M., M. Kuras, M. Kubacka-Zebalska, and A. Kacperska. 1999. Low temperature affects pattern of leaf growth and structure of cell walls in winter oilseed rape (Brassica napus L., var. oleifera L.). Annals of Botany 84:313. Stinson, K. A. 2004. Natural selection favors rapid reproductive phenology in Potentilla pulcherrima (Rosaceae) at opposite ends of a subalpine snowmelt gradient. American Journal of Botany 91:531-539. Ungar, I. A. 1998. Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Botanical Review 64:176-199. Vera, M. L. 1997. Effects of altitude and seed size on germination and seedling survival of heathland plants in North Spain. Plant Ecology 133:101-106. Wardlaw, I. F., J. E. Begg, D. Bagnall, and R. L. Dunstone. 1983. Jojoba: temperature adaptation in growth and leaf function. Australian Journal of Plant Physiology 10:299-312. Waser, N. M. and M. V. Price. 1985. Reciprocal transplant experiments with Delphinium nelsonii (Ranunculaceae): evidence for local adaptation. American Journal of Botany 72:1726-1732. Williams, D. G. and R. A. Black. 1993. Phenotypic variation in contrasting temperature environments: growth and photosynthesis in Pennisetum setaceum from different altitudes on Hawaii. Functional Ecology 7:623-633. Wilson, J. B., G. L. Rapson, M. T. Sykes, A. J. Watkins, and P. A. Williams. 1992. Distributions and climatic correlations of some exotic species along roadsides in South island, New Zealand. Journal of Biogeography 19:183-193. Winn, A. A. 1988. Ecological and evolutionary consequences of seed mass in Prunella vulgaris. Ecology 69:1537-1544. Wintermans, J. F. and A. de Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta 109:448-453. Woodward, F. I. 1979. The differential temperature responses of the growth of certain plant species from different altitudes I.: Growth analysis of Phleum alpinum L., P. bertolonii D.C., Sesleria albicans Kit. and Dactylis glomerata L. New Phytologist 82:385-395. Woodward, F. I. 1986. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70:580-586. Woodward, F. I. and B. G. Williams. 1987. Climate and plant distribution at global and local scales. Vegetatio 69:189-197. Woodward, F. I. and C. K. Kelly. 1995. The influence of CO2 concentration on stomatal density. New Phytologist 131:311-327. Wu, S.-H., C.-F. Hsieh, and M. Rejmanek. 2004. Catalogue of the naturalized flora of Taiwan. Taiwania 49:16-31. Yadava, U. L. 1986. A rapid and nondestructive method to determine chlorophyll in intact leaves. HortScience 21:1449-1450. Yan, W. and L. A. Hunt. 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany 84:607. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37054 | - |
dc.description.abstract | 大花咸豐草 (Bidens pilosa L. var. radiata) 和小白花鬼針 (Bidens pilosa L. var. minor) 為Bidens pilosa的兩個變種。小白花鬼針在1928年即已出現在台灣;大花咸豐草則在1984年引進,現已成為台灣低海拔地區嚴重的入侵植物。根據前人的研究和野外觀察發現,大花咸豐草和小白花鬼針在不同海拔高度的分布有差異:大花咸豐草廣泛分布於低海拔地區,小白花鬼針在低海拔地區的數量顯著低於大花咸豐草;然而越往中高海拔山區,小白花鬼針的族群數量增加,大花咸豐草則減少。故本研究目的在探討影響兩變種在中、低海拔分布差異的可能原因和大花咸豐草入侵中高海拔的可能性,並檢驗以下假設:一、在低海拔地區,大花咸豐草有其生長優勢,使得其族群數量高於小白花鬼針;二、中、高海拔的環境因子限制大花咸豐草生長,以致海拔愈高,其族群數量愈少;三、小白花鬼針在中海拔地區已有族群特化以適應環境。研究主要比較不同光度、水分環境對兩變種的影響,又模擬不同海拔的溫度變化以比較兩變種的種子發芽和莖部不定根生長情形,以及比較生長在嘉義台18線上低海拔 (約500 m)、中海拔 (約1300~1600 m)的大花咸豐草和小白花鬼針各族群在光合作用生理、形態與繁殖特徵上的差異;並且移植生長在不同海拔的族群至台大農場,比較在同一海拔環境下,兩變種間和不同海拔族群間的差異。控制環境因子實驗結果發現,大花咸豐草在高水分和高光的環境下比小白花鬼針具有較高的側枝相對生長速率,且高溫環境下,其莖部不定根生長速率較小白花鬼針快;田間實驗發現小白花鬼針死亡率較高,為一年生的植物,這些特徵差異可能是造成在低海拔環境下,大花咸豐族群數量高於小白花鬼針的重要原因。野外植株測量和控制環境因子實驗發現,大花咸豐草中海拔族群的光合作用表現不遜於低海拔族群,但低溫會降低大花咸豐草不定根生長速率和中海拔族群種子的發芽率,因此溫度是限制大花咸豐草入侵到中高海拔的重要因子。野外植株測量和田間實驗發現小白花鬼針中海拔的族群已有適應中海拔低溫和低光照環境的特化現象。 | zh_TW |
dc.description.abstract | This study investigated two varieties of Bidens pilosa which have differential distribution pattern along altitudes in Taiwan. While B. pilosa var. radiata was introduced into Taiwan in 1984 and has become an invasive plant, B. pilosa var. minor has been in Taiwan since 1928. Field observation reveals that B. pilosa var. radiata is more widely distributed than B. pilosa var. minor at lower altitudes. However, in mid altitudes, population size of B. pilosa var. minor increases while that of B. pilosa var. radiata decreases. In this study, I investigated factors affecting the differential distribution pattern of these two varieties of B. pilosa between two altitudes and tested the following hypotheses, (1) B. pilosa var. radiata has growth advantages over B. pilosa var. minor at low altitudes, (2) environmental factors limit the growth of B. pilosa var. radiata hence cause its population size to decrease in mid altitudes, and (3) populations of B. pilosa var. minor at mid altitudes have developed genetic differentiation in adaptation to mid-altitudinal environment. To test these hypotheses, I compared the responses of these two varieties grown under different irradiance and watering regimes. The growth of adventitious root and seed germination rate of two varieties at two temperatures, 30/25 ℃ (day/night temperature) and 18/13 ℃, were also examined. I also measured morphological, physiological and reproductive characteristics of these two varieties growing at low (500 m) and mid (1300~1600 m) altitudes. Finally, I transplanted these populations to a farm at National Taiwan University to compare the growth of two varieties and to examine if genetic differentiation has occurred in these populations.
When two varieties were grown in NTU farm at low altitudes, B. pilosa var. radiata had higher relative growth rate in lateral branch and longer life span than B. pilosa var. minor. In addition, B. pilosa var. radiata had higher growth rate of adventitious root than B. pilosa var. minor at high temperature. These traits may enable B. pilosa var. radiata to distribute more widely than B. pilosa var. minor at lower altitudes. Low temperature significantly reduced the growth rate of adventitious root and seed germination percentage of B. pilosa var. radiata. Therefore, low temperature is an important factor limiting the invasion of B. pilosa var. radiata into higher altitudes. Results from field measurement and transplant experiment indicate that the population of B. pilosa var. minor at mid altitudes has developed genetic differentiation in adaptation to lower temperature and lower light intensity environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:18:28Z (GMT). No. of bitstreams: 1 ntu-97-R95b44016-1.pdf: 636684 bytes, checksum: 368196685bb18037286a05fb82a0d5bd (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄I
圖表目錄 IV 中文摘要VI 英文摘要 VII 一、前言 1 二、材料與方法 6 (一) 控制環境因子實驗 6 1. 水分和生長光度對植株生長及生理影響之比較 6 1.1 材料和栽種方法 6 1.2 水分處理 6 1.3 生長光度處理 7 2. 溫度對不定根生長及種子發芽率之比較 9 2.1 溫度對不定根生長之影響 9 2.2 溫度對種子發芽率之影響 10 (二) 野外不同海拔高度族群植株測量 11 1. 研究地點和氣象資料來源 11 2. 光合作用及葉片形態季節性變化之比較 12 2.1 葉片特徵測量 12 2.2 葉片葉綠素含量之測定 12 2.3 光合作用速率測量 13 3. 植株開花時的主莖節數和其所結的種子重測量 14 4. 不同季節溫度和光合作用以及葉片特徵的關係比較 14 (三) 移植實驗 14 1. 不同海拔高度族群所結的種子種植在相同環境下的比較 14 1.1 光合作用、葉片特徵之比較 15 1.2 生長、繁殖及生活史比較 15 2. 不同海拔高度族群所結的種子在不同溫度下之發芽率比較 16 (四) 統計分析 16 三、結果 17 (一) 控制環境因子實驗 17 1. 水分和生長光度對植株生長及生理影響之比較 17 1.1 水分處理 17 1.2 生長光度處理 24 2. 溫度對不定根生長及種子發芽率影響之比較 32 2.1 溫度對植株不定根生長之影響 32 2.2 溫度對發芽率之影響 32 (二) 野外不同海拔高度族群植株之測量 35 1. 各海拔氣象資料 35 2. 光合作用及葉片特徵季節性變化之比較 35 2.1 葉片特徵比較 35 2.2 葉片葉綠素含量之比較 35 2.3 光合作用生理比較 36 3. 開花時的主莖節數和其所產生的種子重比較 36 4. 不同季節溫度和光合作用以及葉片特徵的關係比較 37 (三) 田間移植實驗 47 1. 氣象資料 47 2. 不同海拔高度族群植株所結的種子種植在相同環境 (台大農場) 下之比較 47 2.1 葉片特徵及光合作用生理之比較 47 2.2 生長、繁殖及生活史比較 48 3. 不同海拔高度族群植株所結的種子在不同溫度下之發芽率比較 54 四、討論 57 (一) 控制環境因子實驗 57 1. 水分處理對植株生長及生理影響比較 57 2. 生長光度對植株生長及生理影響比較 58 3. 溫度對植株不定根生長能力和種子發芽之影響 60 (二) 野外族群植株之測量 61 (三) 田間移植實驗 65 (四) 綜合討論 67 (五) 未來研究方向 68 五、結論 70 六、參考文獻 71 七、附錄 79 | |
dc.language.iso | zh-TW | |
dc.title | 比較生長在不同海拔高度咸豐草 (Bidens pilosa) 族群間的差異 | zh_TW |
dc.title | A comparison of Bidens pilosa populations at two altitudes in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃玲瓏,侯金日,吳姍樺,陳建德 | |
dc.subject.keyword | 鬼針屬,大花咸豐草,小白花鬼針,光合作用,族群特化, | zh_TW |
dc.subject.keyword | Bidens,B. pilosa var. radiata,B. pilosa var. minor,photosynthesis,population differentiation, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-25 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 621.76 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。