Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37052
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峰輝(Feng- Hui Lin)
dc.contributor.authorChung-Hung Chengen
dc.contributor.author鄭仲宏zh_TW
dc.date.accessioned2021-06-13T15:18:26Z-
dc.date.available2008-07-26
dc.date.copyright2008-07-26
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citation[1] Buckwalter J.A., Rosenberg L.C., Hunziker E.B., Articular cartilage:composition, structure, response to injury, and methods of facilitating repair. In: Ewwing Jw, ed. Articular Cartilage and Knee Joint Function:Basic science and Arthroscopy. New York: raven Press. 1990; 19-56.
[2] Furukawa T., Eyre D., KoidS S., Glimcher M.J., Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee, J bone Joint Surg.1980; 79-89.
[3] Buckwalter J.A., Mankin H.J., Articular cartilage: degeneration and osteoarthritis,
repair, regeneration, and transplantation. Instr Course Lect. 1998; 47: 487-504.
[4] Messner K., Maletius W., The long-term prognosis for severe damage to
weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand .1996; 67(2): 165-168.
[5] Mankin H.J., The response of articular cartilage to mechanical injury, J Bone Joint Surg.1982; 460-466.
[6] Hunter W., On the structure and diseases of articulating cartilage. Phil Trans.
1743:470; 514-521.
[7] Hunziker E.B., Kapfinger E., Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells. J Bone Joint Surg Br. 1998; 80(1): 144-150.
[8] Hunziker E.B., Rosenberg L.C., Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am.
1996; 78(5): 721-733.
[9] Messner K., Healing of articular cartilage injuries. In: Insall JN, Scott WN, editors. Surgery of the knee 3rd ed. Volume 1. Philadelphia: Churchill Livingstone. 2001; 327-340.
[10] Solchaga L.A., Goldberg V.M., Caplan A.I., Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res. 2001;26: 161-170.
[11] Morelli V., Naquin C., Weave V., Alternative therapies for traditional disease states: osteoarthritis. American Family Physician. 2003; 67(2): 339-344.
[12] Felson D.T. ,Anderson J.J., Hyaluronate sodium injections for osteoarthritis: hope, hype, and hard truths.Archives of Internal 81 Medicine.2002; 162(3): 245-247.
[13] Nonaka T., Kikuchi H., Ikeda T., Okamoto Y., Hamanishi C., Tanak S., Hyaluronic acid inhibits the expression of u-PA, PAI-1, and u-PAR in human synovial fibroblasts of osteoarthritis and rheumatoid arthritis. Journal of Rheumatology. 2000; 27: 997-1004.
[14] Pridie K.H., A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg-B. 1959; 41: 618-619.
[15] Peterson R.K., Shelton W.R., Bomboy A.L., Allograft versus autograft patellar tendon anterior cruciate ligament reconstruction: A 5-year follow-up. Arthroscopy. 2001; 17(1): 9-13.
[16] Steadman J.R., Rodkey W.G., Briggs K.K., Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002; 15(3): 170-176.
[17] Steadman J.R., Rodrigo J.J., Briggs K.K., Debridgement and microfracture for full-thickness articular cartilage defects. Surgery of the knee. 2001; 1: 361-373.
[18] Thermann H., Becher C., Microfracture technique for treatment of osteochondral and degenerative chondral lesions of the talus. 2-year results of a prospective study. Unfallchirurg .2004; 107(1): 27-32.
[19] Gillogly S.D., Voight M., Blackburn T., Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation, Journal of Orthopaedic & Sports Physical Therapy. 1998; 28: 241-251.
[20] Minas T., Autologous chondrocyte implantation for focal chondral defects of the knee.Clinical Orthopaedics & Related Research. 2001; 391: 349-361.
[21] Peterson L., Autologous chondrocytes transplantation - long term results.In: Hendrich C, Nöth U, Eulert J, editors. Cartilage surgery and future perspectives: Springer.2003; 19-27.
[22] Behrens P., Ehlers E.M., Kochermann K.U., Rohwedel J., Russlies M., Plotz W.,New therapy procedure for localized cartilage defects. Encouraging results with autologous chondrocyte implantation. MMW Fortschr Med.1999; 141(45): 49-51.
[23] Wagner H., Operative behandlung der osteochondrosis dissecans deskniegelenkes. Z Orthop .1964; 98: 333-355.
[24] Yamashita F., Sakakida K., Suzu F., Takai S., The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop Relat Res .1985; 201: 43-50.
[25] Hangody L., Feczko P., Bartha L., Bodo G., Kish G., Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res .2001; 391: 328-336.
[26] Ueblacker P., Burkart A., Imhoff A.B., Retrograde cartilage transplantation on the proximal and distal tibia. Arthroscopy. 2004; 20(1): 73-78.
[27] Werner A., Arnold J., Transplantation of osteochondral autograft. In:Hendrich C, Nöth U, Eulert J, editors. Cartilage surgery and future perspectives: Springer.2003; 57-59.
[28] Vacanti J.P., Morse M.A., Saltzman W.M., Domb A.J., Perez-Atayde A., Langer R., Selective cell transplantation using bioabsorbable artificial polymers as matrices.J Pediatr Surg. 1988; 23(1-2): 3-9.
[29] Reis R.L., Roman J.S., Biodegradable systems in tissue engineering and
regenerative medicine, CRC Press. 2005.
[30] Langer R., Vacanti J.P., Tissue engineering.Science.1993;260: 920-926.
[31] Cao Y., Vancanti J.P., Paige K.T., Upton J., Vacanti C.A., Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineering cartilage in the shape of a human ear. Plast Reconstr Surg. 1997; 100: 297-302.
[32] Freed L.E., Marquis J.C., Nohria A., Emmanual J., Mikos A.C., Langer R,Neocartilage formation in vitro and in vivo using cells celtured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 1993; 27:11-23.
[33] Folkman J., Haudenshild C., Angiogenesis in vitro. Nature.1980; 288: 551-556.
[34] Lucas-Clerc C., Massart C., Campion J.P., Long-term culture of human pancreatic islets in an extracellular matrix: Morphological and Metabolic effects, Mol Cell Endocrinol 1993; 94: 9-20.
[35] Maqut V., Jerome R., Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mat Sci Forum. 1997; 250: 15-42.
[36] Ma P.X., Scaffolds for tissue fabrication. Materials Today. 2004; 7: 30-40.
[37] Lanza R.P., Langer R., Vacanti J.,Principles of tissue engineering. San Diego: Academic Press. 1999; 671-682.
[38] Van Beuningen H.M., Glansbeek H.L., van der Kraan P.M., van den Berg W.B., Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage .2000; 8(1): 25-33.
[39] Stöve J., Schneider-Wald B., Scharf H.-P., Schwarz M.L.,Bone morphogenetic protein 7 (bmp-7) stimulates Proteoglycan synthesis in human osteoarthritic chondrocytes in vitro. Biomedicine & Pharmacotherapy. 2006; 60: 639–643.
[40] Shi D(Ed.), Biomaterials and tissue Engineering, 2004; New york:Springer. P90
[41] Wheater P.R., Burkitt H.G., Lancaster P., 劉國鈞譯. 組織學彩色圖譜:朗文. 1990
[42] Leon W., Cell and tissue biology: a textbook of histology: Urban &Schwarzengerg.1988; 213-254.
[43] Huiskes R., Basic Orthopaedic Biomechanics & Mechano-Biology Third Edition, Philadelphia: Lippincott Williams&Wilkins. 2005.
[44] Levangine P.K., Norkin C.C., Joint structure and function: a comprehensive analysis. 2001; 49-83.
[45] Aigner T., Fan Z., Anatomy and biochemistry of articular cartilage. In:Hendrich C, Nöth U, Eulert J, editors. Cartilage surgery and future perspectives: Springer; 2003; 3-5.
[46] LeBaron R.G., Athanasiou K.A., Ex vivo synthesis of articular cartilage.
Biomaterials. 2000; 21: 2575-2587.
[47] Lanza R.P., Langer R., Vacanti J., Principles of tissue engineering. San Diego: Academic Press. 1999; 671-682
[48] Nordin, Margareta, Basic Biomechanics of the Musculoskeletal System, Williams & Wilkins Company, 2001
[49] Hutmacher D. W., Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21: 2529-2543.
[50] Nimni M. E., Cheung D., Strates B., Odama M. K., Sheikh K., Bioprosthesis derived from cross-linked and chemically modified collagenous tissues.Nimni, M.E.ed. Collagen, Biotechnology.Florida, CRC Press. Inc. 1988; 3: 1-37.
[51] Newman A.P., Articular Cartilage Repair. the American Journal of Sports Medicine. 1998; 26: 309-324.
[52] Lichun L. P., Xun Z. M., Richard G., Valenzuela M., Bradford L., Currier M., Michael J., Yaszemski M., Biodegradable Polymer Scaffolds for Cartilage Tissue Engineering. Clinical Orthopaedics and Related Research. 2001; 251-270.
[53] Vassilis K. , David K., Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26: 5474–5491.
[54] Hizukuri S., Starch : Analytical aspects. Ch. 9, In Carbohydrate in Food. A. C. Eliasson (Ed.), Marcel Dekker, Inc., New York. 1996; 347-429.
[55] Whistler, R. L., Daniel, J. R., Molecular structure of starch. Starch, 2nd ed. Academic Press, Inc. 1984.
[56] Seymour R.B., Carraher C.E., ”Polymer chemistry”,3rd,薛敬和主譯,高立,1998.
[57] Hizukuri S., Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydrate Res. 1986; 147: 342-347.
[58] Nikuni Z., Studies on starch granules. Starch.1978; 30 : 105-111.
[59] Jane J., Xu A., Radosavljevic M., Seib P.A., Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 1992; 69: 405-409.
[60] Biliaderis C.G., Grant D.R., Vose J.R., Structural characterization of legume starches. É. Amylopectin and â-limit dextrans. Cereal Chem.1981; 58: 496-502.
[61] Lii C.Y., Chiou T.W., Chu Y.L., The degree of branching in amylase from tuber and legume starches. Proc Natl Sci Counc ROC.1987; 11: 341-345.
[62] Whistler R.L., BeMiller J.N., Carbohydrate chemistry for food scientists. Minnesota: AACC. 1997; 119-151.
[63] Jane J., Kasemsuwan T., Location of amylose in normal starch granules.Ⅱ. Location of phosphorous-31 nuclesr magnetic resonance.Cereal Chem. 1994; 282-287.
[64] Gallant D.J., Bouchet B., Baidwin P.M., Microscopy of starch :evidence of a new level of granule organization. Carbohydrate Polymer. 1997; 32: 177-191.
[65] Imberty A., Chanzy H., Perez S., New three dimensional structure for A-type starch. Macromolecules.1987; 20: 2634-2636.
[66] Cooke D., Gidley M.J., Loss of crystalline and molecular order during starch gelatinization : Origin of enthalpic transition. Carbohydrate Res. 1992; 227: 103-112.
[67] Zobel H.F., Molecules to granules : a comprehensive starch review.Starch. 1988; 40: 44-50.
[68] Simon Y., Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release. 2005; 109: 256–274.
[69] Ward, A.G., Courts, A. The Science and Technology of Gelatin. New York: Academic Press. 1977.
[70] Liang G., Physical Gelation of Gelatin Studied with Rheo-Optics. Macromolecules. 2003; 36: 10009-10020.
[71] Michon C., Concentration dependence of the critical viscoelastic properties of gelatin at the gel point. Rheologica Acta .1993; 32(1): 94-103.
[72] Bailey A.J., Paul R.G., Collagen: A not so simple protein. Journal of the Society of Leather Technologists and Chemists. 1998; 82: 104–110.
[73] Baily A.J., Light N.D., Genes, Biosynthesis and Degradation of Collagen in Connective tissue in meat and meat products. ,Elsevier Applied Science. London and New York. 1989.
[74] Hosseinkhani H., Tabata Y., Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J. Nanosci. Nanotechnol. 2006; 6: 2320-2328.
[75] Heidemann E., Peng B., Neiss H.G., Moldehn R., Proceedings of the 5th IAG Conference: Photographic Gelatin. Ed. H. Ammann-Brass and J. Pouradier. International Arbeitsgem. Photogelatine, Fribourg, Switzerland.
[76] Hua Ai, David K. M., Alexander S. J., Steven A. J., Gelatin–Glutaraldehyde cross-linking on silicone rubber to increase Endothelial cell adhesion and growth, In Vitro Cell. Dev. Biol.-Animal.2002; 38: 487-492.
[77] Stevens P.V., Trace bio-organic constituents of gelatins--a review. Food Australia. 1992; 44(7): 320-324.
[78] Murayama, Y., Satoh, S., Oka, T., Imanishi. J., Noishiki, Y., Reduction of the antigenicity and immunogenicity of xenografts by a new cross-linking reagent,Trans. Am. Soc. Artif. Intern. Organ. 1988; 34:546-549.
[79] Tu, R., Lu, C. L., Thyagarajan, K., Wang, E., Nguyen, H., Shen, S.,Hata, C. Quijano, R.C., Kinetic study of collagen with polyepoxy fixatives. J. Biomed. Mater. Res. 1993; 27: 3-9.
[80] Sung H. W., Shen S. H., Tu R., Lin D., Hata C., Noishiki Y.,Tomizawa Y., Quijano R.C., Comparison of cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. ASAIO J.1993; 39: 532-536.
[81] Tu R., Shen S., Wang E., Hata C., Lin D., Quijano R.C., A preliminary study of the reaction mechanism of collagen fixation with a polyepoxy fixative. Int. J. Artif. Organs. 1992; 16: 533-544.
[82] Khor E., Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997; 18: 95-105.
[83] Damink O., Dijkstra, Luyn, Wachem, Nieuwenhuis P., Feijen J., Cross-linking of dermal sheep collagen using a water-soluble carbodiimide .Biomaterials.1996; 17: 765-773.
[84] Zeeman R., Dijkstra P. J., Wachem L. ,Hendriksc M.Cahalanc P. T., Feijena J., Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 1999; 20: 921-931.
[85] Sung H.W., Tu R.,Can cross-linking with a polyepoxy compound improve performance of porcine heart valves? Asian. Cardio. & Thorac. Annals. 1993; 1: 104-109.
[86] Sung H.W., Witzel T. H., Hata C.,Development and evaluation of a
pliable biological valved conduit-Part II: Functional and hemodynamic evaluation,Int. J.Artif. Organs.1993; 16: 199-204.
[87] Park S.N., Park J.C., Kim H.O., Song M.J., Suh H., Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials. 2002; 23: 1205-1212.
[88] Veelaert S., Wit D., Chemical and physical transitions of periodate oxidized potato starch in water.Carbohydrate Polymers.1997; 33:153-162.
[89] Wongsagona R., Preparation and Physicochemical Properties of Dialdehyde Tapioca Starch.Starch. 2005;57 :166–172.
[90] 余靖,” NMR Applications in Structural Biology”
[91] Principles of Instrumental Analysis.fourth edition ,SKOOG/LEARY
[92] Gomez C.G., Oxidation of sodium alginate and characterization of the oxidized derivatives.Carbohydrate Polymers 2007;67: 296–304.
[93] Orban J.M., Wilson L.B., Kofroth J.A., El-Kurid M.S., Maul T.M., Vorp D.A., Crosslinking of collagen gels by transglutaminase. Journal of Biomedical Materials Research.2004; 68: 756-762.
[94] Balakrishnan B., Jayakrishnan A., Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials.2005;26: 3941-3951.
[95] Benya PD, Shaffer JD.,Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels.Cell. 1982; 30: 215-224.
[96] Robinson D., Ash H., Nevo Z., Aviezer D., Characteristics of cartilage biopsies used for autologous chondrocytes transplantation.Cell Transplantation. 2001; 10: 203-208.
[97] Schnabel M., Marlovits S., Eckhoff G., Fichtel I., Gotzen L., Vecsei V., Schlegel J., Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis & Cartilage. 2002; 10: 62-70.
[98] Pinnell S.R., Regulation of collagen biosynthesis by ascorbic acid: a review. Yale Journal of Biology & Medicine. 1985; 58: 553-559.
[99] Campbell M.K., John V. Biochemistry. 1999﹔466-474.
[100] Denizot F., Lang R., Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. immunol. Methods.1983; 65: 55-63.
[101] Nachlas M.M., The determination of lactic dehydrogenase with a tetrazolium salt, Anal. Biochem.1960; 1: 317-26.
[102] BioVision, LDH-Cytotoxicity Assay Kit, Montain View: BioVision Research Products, Catalog # K311-400
[103] Chandrasekhar S., Esterman M.A., Hoffman H.A., Microdetermination of
proteoglycans and glycosaminoglycans in the presence of guanidine
hydrochloride. Analytical Biochemistry. 1987; 161(1): 103-108.
[104] Dragunski D.C., Pawlicka A., Preparation and Characterization of Starch Grafted with Toluene Poly(propylene oxide) Diisocyanate. Materials Research. 2001; 4(2): 77-81.
[105] Infrared spectral interpretation : a systematic approach,written by Brian Smith
[106] Zhang S.D., Zhang Y.R., Modified Corn Starches with Improved Comprehensive Properties for Preparing Thermoplastics. Starch. 2007; 59 : 258–268.
[107] Qiu Y., Park K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2001; 53: 321–339.
[108] Ross J.J., Tranquillo R.T., ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells, Matrix Biology.2003; 22: 477-490.
[109] Wilson R. H., Utilization and toxicity of dialdehyde and dicarboxyl starches. Proc. Soc. Exp. Biol. Med.1959; 102: 735-737 .
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37052-
dc.description.abstract本研究之目的乃利用生物相容性良好的明膠(Gelatin)天然高分子材料作為膠體支架的主要材料,由於明膠的機械性質不理想,因此會利用交聯劑來提升其機械強度,但有鑑於目前常用的交聯劑各有其優缺點,如:戊二醛(glutaraldehyde)、1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)、綠梔子素(genipin),雖然戊二醛對支架的機械強度提升顯著,但對細胞有很強的細胞毒性;而像EDC交聯後,最後會以尿素的形式脫離,對細胞不會造成細胞毒性,但支架的機械強度提升不顯著;綠梔子素對支架的機械強度提升顯著,且也不會造成很強的細胞毒性,但其產物會產生暗黑色,所以目前使用的交聯劑都有其缺點;因此本研究利用NaIO4氧化開環後的雙醛澱粉(Dialdehyde stach,DAS)來當天然材料交聯劑與明膠交聯,以提升水膠支架的機械強度和降低水膠支架細胞毒性,並在體外培養出軟骨組織,以達修復受損關節軟骨之目的。
由實驗結果可知,水膠支架可於室溫下成膠並有適當提升其機械強度和熱穩定性,並於細胞共混後,幾乎沒有細胞毒性(cytotoxicity)並不會影響細胞在二維和三維結構的水膠支架中的增生(proliferation),且培養於三維結構的水膠支架中能促進軟骨細胞分泌細胞外基質(extracellular matrix,ECM),因此可證實水膠的三維結構對於軟骨細胞是個理想的生長環境。相信未來應用於受損軟骨的修復有很大的潛力。
zh_TW
dc.description.abstractThe purpose of research is to use gelatin which has biological compatibility to be hydrogel material .Gelatin is not ideal as the mechanical property, therefore,we promote its mechanical property using the crosslinking agent. In the present commonly used cross-linking agents, for instance: glutaraldehyde , 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC) , genipin etc.Although glutaraldehyde has ideal mechanical strength, but has very strong cytotoxicity; Using EDC to cross-link,and be separated finally from by the urea form, is non-cytotoxicity, but mechanical strength of hydrgel will not be remarkable; Genipin will promote to mechanical strength of hydrgel, and have weak cytotoxicity, but its product can have the dark color, therefore cross-linking agents have its shortcoming at present.In this reseach use sodium periodate to oxidized starch to form Dialdehyde stach(DAS), sodium periodate is a highly selective oxidizing agent, which cleaves the C-2 – C-3 linkage of anhydroglucose units with the formation of dialdehyde groups. The highly reactive dialdehyde groups in starch can be used as cross-linking agents.DAS was crosslinked with gelatin in order to improve the mechanical properties of gelatin/DAS copolymer, and culture the cartilage tissue in vitro, in order to reach the purpose to repair damaged articular cartilage.
From the results, DAS/gelatin hydrogel can form gel at room temperature.The gel strength and thermostability of DAS/gelatin hydrogel was increased when the oxidation percentage of DAS to cross-link gelatin increased.DAS/gelatin hydrogel is non-cytotoxicity and will not influence the cell proliferation.Three-dimensional hydrogel culture model is benefit to chondrocyte to increased the secretion of the extracellular matrix.The results can confirm that the hydrogel three-dimensional structure is the ideal environment for chondrocyte. It has potential to repair local defect of articular cartilage in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:18:26Z (GMT). No. of bitstreams: 1
ntu-97-R95548035-1.pdf: 4987649 bytes, checksum: a937e623869be787c2c264e7ddad256e (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書……………………………………………I
致謝……………………………………………………………II
中文摘要………………………………………………………III
英文摘要………………………………………………………IV
目錄……………………………………………………………V
圖目錄…………………………………………………………VIII
表目錄…………………………………………………………XI
第一章 簡介…………………………………………………1
1-1 前言…………………………………………………1
1-2 關節軟骨的缺陷與修復……………………………2
1-2-1 關節軟骨的缺陷…………….……………2
1-2-2 關節軟骨的修復………….………………4
1-3 研究目的…………………………………………10
第二章 理論基礎…………………………………………11
2-1 組織工程……………………………………………………………11
2-2 組織工程三要素…………………………………12
2-2-1 細胞………………………………………12
2-2-2 支架………………………………………13
2-2-3 訊息………………………………………14
2-3 軟骨………………………………………………15
2-3-1 關節軟骨組織……………………………15
2-3-2 軟骨細胞…………………………………16
2-3-3 軟骨細胞外基質…………………………17
2-4 軟骨組織工程支架材料…………………………19
2-5 澱粉………………………………………………22
2-5-1 直鏈澱粉與支鏈澱粉……………………22
2-5-2 結晶區與非結晶區………………………24
2-6 明膠支架材料……………………………………27
2-6-1 明膠………………………………………27
2-6-2 明膠結構…………………………………28
2-7 交聯劑……………………………………………31
第三章 實驗方法
3-1 實驗儀器…………………………………………34
3-2 實驗藥品………………………………………………35
3-3 實驗方法與流程………………………………………36
3-4 支架製作………………………………………………37
3-5 支架材料分析…………………………………………39
3-5-1 核磁共振儀…………………………………………39
3-5-2 傅立葉轉換紅外線光譜儀……………………40
3-5-3 氧化程度(醛基量)分析.…………………41
3-5-4 交聯程度分析……………………………41
3-5-5 熱重分析儀………………………………42
3-5-6 流變儀分析………………………………42
3-5-7 掃瞄式電子顯微鏡分析…………………43
3-6 細胞培養…………………………………………43
3-6-1軟骨細胞培養方法………………………43
3-7 生物相容性測試……………………………………45
3-7-1 Total DNA的萃取…………………………………45
3-7-2 WST-1 細胞活性測試……………………………45
3-7-3 LDH細胞毒性測試………………………………46
3-7-4 硫酸基之聚葡萄醣胺含量測定…………………47
第四章 結果與討論
4-1 支架材料分析………………………………………49
4-1-1 核磁共振儀分析…………………………………49
4-1-2 傅立葉轉換紅外線光譜儀分析……………52
4-1-3 支架交聯程度分析……………………53
4-1-4 掃瞄式電子顯微鏡分析………………54
4-1-5 熱重分析儀分析………………………55
4-1-6 流變儀分析……………………………59
4-1-7 掃瞄式電子顯微鏡分析…………………………62
4-2 軟骨細胞體外培養評估……………………………64
4-3 生物相容性測試……………………………………66
4-3-1 Total DNA與細胞增生及活性測試(WST-1)分析…66
4-3-2 細胞毒性測試分析…………………………………67
4-3-3 Total DNA萃取分析…………………………………69
4-3-4 硫酸基之聚葡萄醣胺含量測定分析…………………70
第五章 結論………………………………………………71
參考文獻…………………………………………………73
dc.language.isozh-TW
dc.subject軟骨修復zh_TW
dc.subject水膠支架zh_TW
dc.subject雙醛澱粉zh_TW
dc.subject交聯劑zh_TW
dc.subjectarticular cartilage repairen
dc.subjectcross-linking agenten
dc.subjecthydrogelen
dc.subjectdialdehyde starchen
dc.title軟骨細胞培養於雙醛澱粉交聯明膠凝膠體外評估之研究zh_TW
dc.titleIn vitro Evaluation of Chondrocyte on Dialdehyde-Starch-Crosslinked Gelatin Hydrogelen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊禎明(Jen-Ming Yang),陳克紹(Ko-Shao Chen),姚俊旭,莎維塔(Savitha)
dc.subject.keyword交聯劑,雙醛澱粉,水膠支架,軟骨修復,zh_TW
dc.subject.keywordcross-linking agent,dialdehyde starch,hydrogel,articular cartilage repair,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2008-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved