Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37040
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬劍清
dc.contributor.authorChun-Kai Changen
dc.contributor.author張鈞凱zh_TW
dc.date.accessioned2021-06-13T15:18:15Z-
dc.date.available2011-08-15
dc.date.copyright2011-08-15
dc.date.issued2011
dc.date.submitted2011-08-11
dc.identifier.citation[1] Bacon, D. R., 'Characteristics of a PVDF membrane hydrophone for use in the range 1-100 MHz,' IEEE Transactions on Sonics and Ultrasonics, vol. 29, pp. 18-25, 1982.
[2] Bauer, F., 'PVDF shock sensors: applications to polar materials and high explosives,' IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, pp. 1448-1454, 2000.
[3] Bertholds, A. and Dandliker, R., 'Determination of the individual strain-optic coefficients in single-mode optical fibres,' Journal of Lightwave Technology, vol. 6, pp. 17-20, 1988.
[4] Biswas, P., Bandyopadhyay, S., Kesavan, K., Parivallal, S., Sundaram, B. A., Ravisankar, K., and Dasgupta, K., 'Investigation on packages of fiber Bragg grating for use as embeddable strain sensor in concrete structure,' Sensors and Actuators A: Physical, vol. 157, pp. 77-83, 2010.
[5] Breckenridge, F. R., Tschiegg, C. E., and Greenspan, M., 'Acoustic emission: some applications of Lamb’s problem,' The Journal of the Acoustical Society of America, vol. 57, p. 626, 1975.
[6] Brown, L. F., 'Design considerations for piezoelectric polymer ultrasound transducers,' IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, pp. 1377-1396, 2000.
[7] Chuang, K. C. and Ma, C. C., 'Tracking control of a multilayer piezoelectric actuator using a fiber bragg grating displacement sensor system,' IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, pp. 2036-2049, 2009.
[8] D'Acquisto, L. and Montanini, R., 'A Study on the Measurement Instrumentation for a Custom-Made Bipendulum Impact Testing Machine,' IEEE Transactions on Instrumentation and Measurement, vol. 57, pp. 2487-2494, 2008.
[9] Davies, B. and Martin, B., 'Numerical inversion of the Laplace transform: A survey and comparison of methods,' Journal of computational physics, vol. 33, pp. 1-32, 1979.
[10] Doyle, J. F., 'Determining the contact force during the transverse impact of plates,' Experimental Mechanics, vol. 27, pp. 68-72, 1987.
[11] Dubner, H. and Abate, J., 'Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform,' Journal of the ACM (JACM), vol. 15, pp. 115-123, 1968.
[12] Durbin, F., 'Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method,' The Computer Journal, vol. 17, pp. 371-376, 1974.
[13] Erdogan, T., 'Fiber grating spectra,' Journal of Lightwave Technology, vol. 15, pp. 1277-1294, 1997.
[14] Fukada, E., 'History and recent progress in piezoelectric polymers,' IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, pp. 1277-1290, 2000.
[15] Gaul, L. and Hurlebaus, S., 'Determination of the impact force on a plate by piezoelectric film sensors,' Archive of Applied Mechanics, vol. 69, pp. 691-701, 1999.
[16] Goldsmith, W., 'Impact,' Arnold, 1960.
[17] Hill, K., Fujii, Y., Johnson, D., and Kawasaki, B., 'Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,' Applied Physics Letters, vol. 32, pp. 647-649, 1978.
[18] Hill, K., Malo, B., Bilodeau, F., Johnson, D., and Albert, J., 'Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,' Applied Physics Letters, vol. 62, pp. 1035-1037, 1993.
[19] Huang, S., LeBlanc, M., Ohn, M., and Measures, R., 'Bragg intragrating structural sensing,' Applied Optics, vol. 34, pp. 5003-5009, 1995.
[20] Hwang, G. S., Huang, D. W., and Ma, C. C., 'Improved-bonding linearly chirped fiber grating for a high-sensitivity surface-mounted strain sensor,' Applied Optics, vol. 49, pp. 3348-3356, 2010.
[21] Hwang, G. S., Huang, D. W., and Ma, C. C., 'Numerical Study on Strain Measurements Using the Improved Bonding Fiber Bragg Grating,' IEEE Sensors Journal, vol. 10, pp. 1012-1018, 2010.
[22] Kawai, H., 'The piezoelectricity of poly (vinylidene fluoride),' Japanese Journal of Applied Physics, vol. 8, pp. 975-976, 1969.
[23] Kersey, A. D., Berkoff, T., and Morey, W., 'Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,' Optics letters, vol. 18, pp. 1370-1372, 1993.
[24] Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K., Askins, C., Putnam, M., and Friebele, E. J., 'Fiber grating sensors,' Journal of Lightwave Technology, vol. 15, pp. 1442-1463, 1997.
[25] Lamb, H., 'On the propagation of tremors over the surface of an elastic solid,' Philosophical Transactions of the Royal Society of London, vol. 203, pp. 63-100, 1904.
[26] Ling, H., Lau, K., Jin, W., and Chan, K., 'Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,' Optics Communications, vol. 270, pp. 25-30, 2007.
[27] Lovinger, A. J., 'Ferroelectric polymers,' Science, vol. 220, pp. 1115-1121, 1983.
[28] Ma, C. and Lee, G., 'Theoretical analysis, numerical calculation and experimental measurement of transient elastic waves in strips subjected to dynamic loadings,' International Journal of Solids and Structures, vol. 36, pp. 3541-3564, 1999.
[29] Ma, C. C. and Chuang, K. C., 'Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system,' Smart Materials and Structures, vol. 17, p. 065010, 2008.
[30] Ma, C. C. and Wang, C. W., 'Transient Strain Measurements of a Suspended Cable Under Impact Loadings Using Fiber Bragg Grating Sensors,' IEEE Sensors Journal, vol. 9, pp. 1998-2007, 2009.
[31] Melle, S. M. and Liu, K., 'A passive wavelength demodulation system for guided-wave Bragg grating sensors,', IEEE Photonics Technology Letters, vol. 4, pp. 516-518, 1992.
[32] Meltz, G., Morey, W., and Glenn, W., 'Formation of Bragg gratings in optical fibers by a transverse holographic method,' Optics letters, vol. 14, pp. 823-825, 1989.
[33] Murukeshan, V., Chan, P., Ong, L., and Seah, L., 'Cure monitoring of smart composites using fiber Bragg grating based embedded sensors,' Sensors and Actuators A: Physical, vol. 79, pp. 153-161, 2000.
[34] Pao, Y. H., Gajewski, R. R., and Ceranoglu, A. N., 'Acoustic emission and transient waves in an elastic plate,' The Journal of the Acoustical Society of America, vol. 65, p. 96, 1979.
[35] Pekeris, C., 'The seismic surface pulse,' Proceedings of the National Academy of Sciences of the United States of America, vol. 41, pp. 469-480, 1955.
[36] Proctor, T., 'Some details on the NBS conical transducer,' Journal of Acoustic emission, vol. 1, pp. 173-178, 1982.
[37] Proctor, T., Breckenridge, F., and Pao, Y., 'Transient waves in an elastic plate: theory and experiment compared,' The Journal of the Acoustical Society of America, vol. 74, p. 1905, 1983.
[38] Rao, Y., 'In-fibre Bragg grating sensors,' Measurement science and technology, vol. 8, p. 355, 1997.
[39] Shin, C., Chen, B., and Liaw, S., 'An FBG-Based Impact Event Detection System for Structural Health Monitoring,' Advances in Civil Engineering, vol. 2010, 2010.
[40] Shirinov, A. and Schomburg, W., 'Pressure sensor from a PVDF film,' Sensors and Actuators A: Physical, vol. 142, pp. 48-55, 2008.
[41] Sirohi, J. and Chopra, I., 'Fundamental understanding of piezoelectric strain sensors,' Journal of Intelligent Material Systems and Structures, vol. 11, p. 246, 2000.
[42] Su, Y. C. and Ma, C. C., 'Theoretical analysis of transient waves in a simply-supported Timoshenko beam by ray and normal mode methods,' International Journal of Solids and Structures, 2010.
[43] Sun, Q., Liu, D., Xia, L., Wang, J., Liu, H., and Shum, P., 'Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,' IEEE Photonics Technology Letters, vol. 20, pp. 933-935, 2008.
[44] Tai, H., 'Simple numerical simulation of strain measurement,' SPIE’s 47 Annual Meeting, July 5-11, pp. 5-11, 2002.
[45] Takahashi, S. and Shibata, S., 'Thermal variation of attenuation for optical fibers,' Journal of Non-Crystalline Solids, vol. 30, pp. 359-370, 1979.
[46] Zhao, X., Song, G., Fernandez, M., and Ou, J., 'One kind of fiber Bragg grating displacement sensor using micro-elastic spring (Proceedings Paper),' 2009.
[47] 'Singal Conditioner Model 2775AM4,' Endevco Corporation.
[48] 'Piezo film sensors technical manual,' Measurement Spercialties, Inc., 1999.
[49] 潘善盈, 馬劍清, '應用PVDF感測器於懸臂樑之主動抑振與揚聲器音壓之控制' 國立台灣大學機械工程研究所碩士論文, 2009.
[50] 江嘉慶, 單秋成, '能量調變型光纖光柵感測器' 第十二屆機械工程研討會, 2003.
[51] 葉耀文, 馬劍清, '短週期光纖光柵在動態系統的量測與應用' 國立台灣大學機械工程研究所碩士論文, 2003.
[52] 張智凱, 馬劍清, '應用暫態彈性波理論反算材料性質' 國立台灣大學機械工程研究所碩士論文, 1996.
[53] 張振銘, 馬劍清, '應用暫態彈性波理論反算薄膜系統之材料性質' 國立台灣大學機械工程研究所碩士論文, 1998.
[54] 李艮生, 馬劍清, '三維層狀介質暫態彈性波傳的理論解析、計算及實驗' 國立台灣大學機械工程研究所博士論文, 1998.
[55] 廖雪吩, 應宜雄, '應用數值拉普拉斯逆轉換法於壓電材料動力破壞之研究' 國立淡江大學航空太空工程學系碩士論文, 2007.
[56] 張嘉峰, 林宜清, '混凝土結構品質應力波檢測方法與裝置開發及應用' 國立中興大學土木工程學系碩士論文, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37040-
dc.description.abstract壓電薄膜感測器(PVDF)與布拉格光纖光柵(FBG),是近年來常被學者研究的兩種感測器。本文主要利用PVDF感測器可量測壓力的特性,將其黏貼於待測物表面以獲得動態外力作用的波源歷時,利用此方法獲得外力的優點在於PVDF本身輕薄不影響待測物系統、易黏貼於各待測物表面且具有優異的動態量測能力,本文也建立PVDF量測動態外力作用於薄板結構的方法。另一方面,研究中將利用FBG能量調變法來量測結構物的應變與位移並與其他感測器比較,針對FBG三維量測系統的動態量測能力做相關的探討。
本文利用量測到的波源歷時配合理論分析與有限元素法數值計算(ABAQUS)來獲得結構物的暫態波傳行為。其中理論計算本文利用兩種方法分析分別為模態疊加法與拉普拉斯轉換法,對於拉普拉斯轉換域下的逆轉換計算通常是很複雜的,為了使計算更簡單與有效率,我們利用Durbin拉普拉斯數值逆轉換的方式來獲得半解析半數值的理論解,並利用模態疊加法的理論正解來驗證拉普拉斯轉換法配合Durbin拉普拉斯數值逆轉換的正確性。在大多數工程結構問題上要獲得理論解是不容易的工作,因此本文也利用有限元素法模擬結構物的暫態波傳行為。最後將理論分析與有限元素法數值計算的結果與實驗量測比較,驗證實驗量測的正確性。
zh_TW
dc.description.abstractRecently, piezoelectric film(PVDF) and fiber Bragg grating(FBG) are usually investigated by researcher. We use the FBG with power modulated sensing method to measure strain and displacement of the structure, and compared the sensing results with other sensors. Also, we investigate and discuss the dynamic measurement ability of the three-dimensional FBG measurement system. Then, PVDF can be used to measure pressure and dynamic external force history and has many advantages such as light, thin, excellent dynamic measurement ability and easy to adhesive on the object surface. In this thesis, we establish a measurement method to measure the dynamic force history on thin plate structures.
We can use the force history to conduct theoretical analysis and numerical calculation of finite element method(ABAQUS) then obtain the results of transient wave propagation within the structure. In theoretical analysis, we use the normal mode method and the Laplace transform method to calculate the results of transient wave propagation within the structure. For the Laplace transform method, it’s difficult to derive the inversion in transform domain. Therefore, we use the Durbin numerical inversion method to inverse the solution in transform domain and the inversion can be easier and more efficient. Besides, we use the exact solution determined by normal mode method to compare with the solution determined by Laplace method. It’s not easy to obtain the theoretical solution of transient wave propagation within the structure in most of engineering structure issue, thus, we can use the finite element method to estimate it. Finally, we compare the transient response of theoretical analysis, finite element method and experimental measurement to verify the accuracy of experimental measurement.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:18:15Z (GMT). No. of bitstreams: 1
ntu-100-R98522518-1.pdf: 15610120 bytes, checksum: e98ab7db2d0e4fced9764cda8ec913e7 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XX
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 壓電薄膜感測器 2
1.2.2 光纖光柵感測器 3
1.2.3 暫態波傳理論 4
1.3 內容簡介 5
第二章 實驗設備及感測器介紹 8
2.1 布拉格光纖光柵 8
2.1.1 布拉格光纖光柵基本原理 8
2.1.2 布拉格光纖光柵模態耦合理論 10
2.1.3 模態耦合理論應用於動態應變場 13
2.1.4 布拉格光纖光柵能量調變法 15
2.2 聚偏二氟乙烯薄膜感測器 15
2.3 光纖位移計 17
2.4 錐形位移感測器 18
第三章 波源歷時量測 32
3.1 Hertz接觸理論 32
3.2 實驗量測波源歷時方法 34
3.2.1 電流法 34
3.2.1.1 實驗架設 34
3.2.1.2 實驗結果與討論 35
3.2.2 PVDF量測法 36
3.2.2.1 實驗架設 37
3.2.2.2 實驗結果與討論 38
3.2.3 PVDF量測法於薄樑結構之應用 40
3.2.3.1 實驗架設 40
3.2.3.2 實驗結果與討論 41
第四章 懸臂樑受鋼珠撞擊暫態波傳理論計算 63
4.1 古典樑理論與理論波源歷時 63
4.1.1 古典樑理論 63
4.1.2 理論波源歷時 64
4.2 模態展開法(Normal Mode Method) 65
4.2.1 利用模態展開法求鋼珠撞擊懸臂樑之暫態響應 65
4.3 拉普拉斯轉換法(Laplace Transform Method) 73
4.3.1 Durbin數值拉普拉斯逆轉換方法 74
4.3.2 利用拉普拉斯轉換法求鋼珠撞擊懸臂樑之暫態響應 75
4.4 數值計算討論與比較 85
4.4.1 模態展開法在懸臂樑高頻時的數值問題 85
4.4.2 數值計算 87
第五章 懸臂樑受鋼珠撞擊暫態波傳實驗與有限元素數值計算 113
5.1 ABAQUS有限元素法數值計算 113
5.2 實驗架設 115
5.3 理論分析、數值計算與實驗量測結果與討論 116
5.3.1 觀測點距離固定端118mm處之軸向應變 118
5.3.2 觀測點距離固定端90mm處之軸向應變 121
5.3.3 觀測點距離固定端90mm處之側向位移 123
5.3.4 觀測點距離固定端10mm處之軸向應變 126
5.3.5 觀測點距離固定端10mm處之側向位移 128
5.4 利用布拉格光纖光柵量測懸臂樑暫態位移與應變 130
5.4.1 實驗架設 130
5.4.2 結果與討論 131
第六章 實驗量測及理論模擬固體波傳 185
6.1 三維半無窮域受步階函數波源作用 185
6.1.1 實驗架設 185
6.1.2 實驗與結果討論 186
6.2 二維半無窮域受步階函數波源作用 187
6.2.1 實驗架設與模擬設定 187
6.2.2 實驗與結果討論 188
6.3 二維鋼板受步階函數波源作用 189
6.3.1 實驗架設與模擬設定 189
6.3.2 實驗與結果討論 189
6.4 厚鋁塊受鋼珠撞擊暫態波傳量測 190
6.4.1 實驗架設 190
6.4.2 實驗與結果討論 191
第七章 結論與未來展望 221
7.1 結論 221
7.2 未來展望 223
參考文獻 225
附錄 231
dc.language.isozh-TW
dc.subject數值拉普拉斯逆轉換zh_TW
dc.subject布拉格光纖光柵zh_TW
dc.subject壓電薄膜zh_TW
dc.subjectPVDFzh_TW
dc.subject有限元素法zh_TW
dc.subject能量調變法zh_TW
dc.subject暫態波傳zh_TW
dc.subject波源歷時zh_TW
dc.subject模態疊加法zh_TW
dc.subject拉普拉斯轉換法zh_TW
dc.subjectLaplace transform methoden
dc.subjectfinite element methoden
dc.subjectpower modulated sensing methoden
dc.subjecttransient wave propagationen
dc.subjectforce historyen
dc.subjectnormal mode methoden
dc.subjectnumerical inversion of Laplaceen
dc.subjectfiber Bragg gratingen
dc.subjectpiezoelectric filmen
dc.subjectPVDFen
dc.title位移與應變暫態波傳之實驗量測、理論分析以及數值計算zh_TW
dc.titleExperimental Measurement, Theoretical Analysis and Numerical Calculation of Transient Wave Propagation of Displacement and Strainen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃錦煌,鄭志鈞,劉昭華
dc.subject.keyword布拉格光纖光柵,壓電薄膜,PVDF,有限元素法,能量調變法,暫態波傳,波源歷時,模態疊加法,拉普拉斯轉換法,數值拉普拉斯逆轉換,zh_TW
dc.subject.keywordfiber Bragg grating,piezoelectric film,PVDF,finite element method,power modulated sensing method,transient wave propagation,force history,normal mode method,Laplace transform method,numerical inversion of Laplace,en
dc.relation.page236
dc.rights.note有償授權
dc.date.accepted2011-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
15.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved