Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王明光
dc.contributor.authorYa-Hui Chuangen
dc.contributor.author莊雅惠zh_TW
dc.date.accessioned2021-06-13T15:17:58Z-
dc.date.available2011-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citationAramendia, M.A., V. Borau, C. Jimenez, J.M. Marinas, F.J. Romero, and J.R. Ruiz. 1997. Synthesis, characterization, and H-1 and Ga-71 MA NMR spectroscopy of a novel Mg/Ga double layered hydroxide. J. Solid State Chem. 131:78-83.
Ariel, L.P., J.E. Pemberton, B.A. Becker, W.H. Otto, C.K. Larive, and M.M. Raina. 2006. Determination of the Acid Dissociation Constant of the Biosurfactant Monorhamnolipid in Aqueous Solution by Potentiometric and Spectroscopic Methods. Anal. Chem. 78: 7649-7658.
Bai, G.Y., M.L. Brusseau, and R.M. Miller. 1997. Biosurfactant enhance removal of residual hydrocarbon from soil. J. Contam. Hydrol. 2:157-170.
Banat, I.M. 1995. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technol. 51:1-12.
Beak, S.O., R.A. Fied, M.E. Goldstone, P.W. Kirk, J.N. Lester, and A.R. Perry. 1991. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water Air Soil Pollut. 60:279-300.
Bellotto, M., B. Rebours, O. Clause, J. Lynch, D. Bazin, and E. Elkaim. 1996. A reexamination of hydrotalcite crystal chemistry. J. Phys. Org. Chem. 100:8527-8534.
Boving, T.B., and W. Zhang. 2004. Removal of aqueous-phase polynuclear aromatic hydrocarbons using aspen wood fibers. Chemosphere. 54:831-839.
Brunk, B.K., G.H. Jirka, and L.W. Lion. 1997. Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping in estuaries. Environ. Sci. Technol. 31:119-125.
Carlino, S. 1997. The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods. Solid State Ionics. 98: 73-84.
Cassidy, D.P., and A.J. Hudak. 2001. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J. Haz. Mat. 84 (2-3):253-264.
Cavani, F., F. Trifiro, and A. Vaccari. 1991. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal.Today. 11:173-301.
Chibwe, K., and W. Jones. 1989. Intercalation of organic and inorganic anions into layered double hydroxides. J. Chem. Soc. Chem. Commun. 926-927.
Chuang, Y.H., Y.M. Tzou, M.K. Wang, C.H. Liu, and P.N. Chiang. 2008. Removal of 2-chlorophenol from aqueous solution by Mg/Al layered double hydroxide (LDH) and modified LDH. Ind. Eng. Chem. Res. 47:3813-3819.
Crepaldi, E.L., P.C. Pavan, and J.B. Valim. 1998. A new method of intercalation by anion exchange in layered double hydroxides. Chem. Commun. 155-156
Dahrazma, B., N. Catherine, B. Mulligan, and M.P. Nieh. 2008. Effects of additives on the structure of rhamnolipid (biosurfactant):A small-angle neutron scattering (SANS) study. J. Coll. Interf. Sci. 319: 590-593.
Davis, C.S., P. Fellin, and R. Otson. 1987. A Review os Sampling Methods for polynuclear Aromatic Hydrocarbons in Air. J. Appl. Crystallogr. 37:1397-1408.
Dékány, I., F. Berger, K. Imrik, and G. Lagaly. 1997. Hydrophobic layered double hydroxides (LDHs): Selective adsorbents for liquid mixtures. Colloid Polym.Sci. 275:681-688.
Edwards, D.A., Z. Liu, and R.G. Luthy.1994. Surfactant Solubilization of Organic Compounts in Soil/Aqueous Systems. J. Environ. Eng. 120:23-41.
Fern´andez, L., C. Borr´as, and H. Carrero. 2006. Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode. Electrochimica Acta. 52:872-884.
Finayson-Pitts, B.J., and J.N.Pitts. 1986, Atmospheric Chemistry:Fundamentals and Experimental Techniques, John Wiley & Suns Inc. New York.
Frank, S. 2001. Wolfgang A lattice-gas model for specific ion adsorption at liquid/liquid interfaces. J. Electroanal. Chem. 500:491-497.
Georgiou, G., S. Lin, and M.M. Sharma. 1992. Surface active compounds from microorganisms. Biotechnology. 10:60-65.
Giles, C.H., T.H. Macewan, S.N. Nakhwa, and D. Simth. 1960. Studies in adsorption. Part XI. A System of classification of adsorption isotherms and its ues in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 3973-3993.
Goswamee, R.L., P. Sengupta, K.G. Bhattacharyya, and D.K. Dutta. 1998. Adsorption of Cr(VI) in layered double hydroxides. Appl. Clay Sci. 13:21-34.
Grimmer, G. 1983. Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons , CRC Press Inc, New York.
Gruber, T., H. Chmeil, O. Kappeli, P. Sticher, and A. Fiechter. 1993. Integrated process for continuous rhamnolipid biosynthesis. Surfactant Sci. Sr. 48:157-173.
Hart, H., D. Hart, and L. Craine. 1995. Organic Chemistry a Short Course. Ninth edition. Houghton Mifflin Company, Boston.
Hu, C., B. Yue, and T. Yamase. 2000. Photoassisted dehalogenation of organo-chlorine compounds by paratungstate A in aqueous solutions. Appl. Catal. A. 194/195:99-107.
Hussein, M.Z.B., Z. Zainal, and Y.M. Chin. 2000. Microwave-assisted synthesis of Zn-Al-layered double hydroxide-sodium dodecyl sulfate nanocomposite. J. Mater. Sci. Lett. 19:879-883.
Inoh, Y., D. Kitamoto, and N. Hirashima. 2001. Mamoru biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes. Biochem. Biophys. Res. Commun. 289:57-61.
Kanezaki, E. 1998. Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ionics. 106:279-284.
Kim, Y.A., J. Min, Y.J. Lee, H.S. Park, S.Y. Han, G.J. Jhon, and W. Choi. 2001. Lysophosphatidylcholine derived from deer antler extract suppresses hyphal transition in Candida albicans through MAP kinase pathway. Mol. Cell Bio. 1531:77-89.
Klumpp, E., C.C. Ortegac, P. Klahrea, F.J. Tinoa, S. Yapard, C. Prtilloc, S. Stegenc, F. Queiroloc, and M.J. Schwuger. 2004. Sorption of 2,4-dichlorophenol on modified hydrotalcites. Coll. Surf. A: Physiocochem. Eng. Aspec. 320:111-116.
Kopka, K., G. Beneke, and J. Lagaly. 1988. Anionic surfactants between double. metal hydroxide layers (LDH). J. Coll. Interf. Sci. 123: 427-436.
Kovanda, F., E. Kovácsová, and D. Koloušek. 1999. Removal of anions from solution by calcined hydrotalcite and regeneration of used sorbent in repeated calcination-rehydration-anion exchange proceses. Collect. Czech. Chem. Commun. 64:1517-1528.
Lagaly, G., and K. Beneke. 1991. Intercalation and exchange reactions of clay minerals and non-clay layer compounds. Colloid Polym. Sci. 269:1198-1211.
Laha, S.R., and G. Luthy. 1992. Effects of nonionic surfactants on the mineralization of phenanthrene in soil-water systems. Biotechnol. Bioeng. 40:1367-1380.
Lazaridis, N.K., T.A. Pandi, and K.A. Matis. 2004. Chromium(VI) removal from aqueous solutions by Mg-Al-CO3 hydrotalcite: sorption-desorption kinetic and equilibrium studies. Ind. Eng. Chem. Res. 43:2209-2215.
Lazaridis, N.K., and D.D. Asouhidou. 2003. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Res. 37:2875-2882.
Lee, M.L., G.P. Pardo, J.B. Howard, and R.A. Hites. 1977. Source identification of urban airborne polycyclic aromatic hydrocarbons by gas chromatographic mass spectrometry. Biomed. Mass Spectrom. 4:182-186.
Leuenberger, C., J. Czuczwa, E. Heyerdahl, and W. Giger. 1988. Aliphatic and polycyclic aromatic hydrocarbons in unban rain, snow and fog. Atoms. Environ. 22:695-705.
Marcio, J.D.R., F. Silverio, J. Tronto, and J.B. Valim. 2004. Effects of pH, temperature, and ionic strength on adsorption of sodium dodecylbenzenesulfonate into Mg-Al-CO3 layered double hydroxides. J. Phys. Chem. Solids. 65:487-492.
Massara, H., C.N. Mulligan, and J. Hadjinicolaou. 2007. Effect of rhamnolipid on chromium-containated kaolinite. Soil Sediment Contam. 16:1-14.
Meyn, M., K. Beneke, and G. Lagaly. 1990. Anion-exchange reactions oflayered double hydroxides. Inorg. Chem. 29:5201-5207.
Miyata, S. 1975. The syntheses of hydrotalcite-like compounds and their structures and physical-chemical properties-I: The systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl- . Clays Clay Miner. 23:369-375.
Miyata, S. 1980. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner. 28:50-55.
Miyata, S. 1983. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 31:305-311.
Miyata, S., and T. Kumura. 1973. Synthesis of new hydrotalcite-like compounds and their physico-chemical properties, Chem. Lett. 843-848.
Mulligan, C.N. 2005. Environmental applications for biosurfactants. Environ. Pollution. 133:183-198.
Mulligan, C.N., R.N. Yong, and B.F. Gibbs. 2001. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60: 371-380.
Mylonas, A., and E. Papaconstantinou. 1994. Photocatalytic degradation of chlorophenols to CO2 and HC1 with polyoxotungstates in aqueous solution. J. Mol. Catal. A. Chem. 92: 261-267.
Naes, K., J. Knutzen, and L. Berglind. 1995. Occurrence of PAH in marine organisms and sediments from smelter discharge in Norway. Sci. Total Environ. 163:93-106.
Newman, S.P., and W. Jones. 1998. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J. Chem. 22:105-115.
Noordman, W.H., H.J. Johann, G.J. Boer, and D.B. Janssen. 2002. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol. 94:195-212.
Oberbremer, A.R., M. Hurtig, and F. Wagner. 1990. Effect of addition of microbial surfactant on hydrocarbon degradation in soil population in a stirredreactor. Appl. Microbiol. Biotechnol. 32:485-489.
Ochsner, U.A., J. Reiser, A. Fiechter, and B.Witholt. 1995. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl. Environ. Microbiol.. 61:3503-3506.
Pavan P.C., E.L. Crepaldi, G. Gómez, and J. Valim. 1999. Sorption of 2,4-dichlorophenol on modified hydrotalcites. Colloids Surf. A. 154:399-410.
Pe´rez, N. L.P., M.R. Infante, and M.T. Garcı´a. 2005. Biological properties of arginine-based glycerolipidic cationic surfactants. Green Chem. 7:540-546.
Pennell, K.D., L.M. Abriola, and W.J. Weber. 1993. Surfactant-Enhanced Solubilization of Residual Dodecane in Soil Columns. 1. Experimental Investigation. Environ. Sci. Technol. 27(12): 2332-2340.
Qiu, L., W. Chen, and B. Qu. 2006. Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites. Polym. 47: 922-930.
Rhee, S.W., M.J. Kang, H. Kim, and C.H. Moon. 1997. Removal of aquatic chromate ion involving rehydration reaction of calcined layered double hydroxide(Mg-Al-CO3). Environ.Technol. 18:231-236.
Rosen, M.J. 1978. Surfactants and interfacial phenomena. 1st ED, John Wiley & Suns Inc. New York, 142-158.
Shin, K.H., and K.W. Kim. 2004. A biosurfactant-enhanced soil flushing for the removal of phenanthrene and diesel in sand. Environ. Geochem. Health. 26:5-11.
Shin, K.H., K.W. Kim, and Y. Ahn. 2006. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization- biodegradation process. J. Harzard. Mater. 137:1831-1837.
Tichit, D., and B. Coq. 2003. Catalysis by hydrotalcites and related materials. Cattech. 7: 206-217.
U.S. Environmental Protection Agency. 2002. Toxics Criteria for Those States not Complying with Clean Water Act section 303(c)(2)(B). Code of Federal Regulations, Part 131.36, Title 40; U.S. Environmental Protection Agency: Washington, D.C.
Vipulanandan, C., and X. Ren. 2000. Enhanced solubility and biodegradation of naphthalene with biosurfactant. J. Environ. Eng. 126:629-634.
Wang, S.L., and P.C. Wang. 2006. In situ XRD and ATR-FTIR study on the molecular orientation of interlayer nitrate in Mg/Al-layered double hydroxides in water. Colloids Surf. A. 292:131-138.
Warith, M., L. Fernandes, and N. Gaudetb. 1999. Design of in-situ microbial flter for the remediation of naphthalene. Waste Manage.19:9-25.
Witt, G. 1995. Polycyclic Aromatic Hydrocarbons in Water and Sediment of theBaltic Sea. Mar. Pollut. Bull. 31:237-248.
Yang, D.S., M.K. Wang, and S.L. Wang. 2004. Synthesis of Li/Al layered double hydroxide-guest composites under mild acid conditions. Clay Miner. 39:115-121.
Yang, L., Z. Shahrivari, P.K.T. Liu, M. Sahimi, and T.T. Tsotsis. 2005. Removal of trace levels of arsenic and selenium from aqueous solutions by calcined and uncalcined layered double hydroxides (LDH). Ind. Eng. Chem. Res. 44: 6804-6815.
Yang, Q.Z., J. Yang, and C.K. Zhang, 2006. Synthesis and properties of cordycepin intercalates of Mg-Al-nitrate layered double hydroxides. Int. J. Pharm. 326:148-152.
You, Y., H. Zhao, and G.F. Vance. 2002. Surfactant-enhanced adsorption of organic compounds by layered double hydroxides. Colloids Surf., A. 205:161-172
You, Y., G.F. Vance, and H. Zhao. 2001. Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Appl. Clay Sci. 20:13-25.
Zammarano, M., S. Bellayer, J. W. Gilman, M. Franceschi, F. Beyer, R.H. Harris, and S.Meriani. 2006. Delamination of Organo-Modified Layered Double Hydroxides in Polyamides by Melt Processing. Polym. 47:652-662.
Zhao, H. and K.L. Nagy. 2004. Docecyl sulfate hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J. Coll. Interf. Sci. 274: 613-624.
Zhao, H., and K.L. Nagy. 2004. Docecyl sulfate hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J. Coll. Interf. Sci. 274: 613-624.
Zhou, W., and L. Zhu. 2007. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactante-PAHs system. Environ. Pollut. 147: 66-73.
Zhu, L., and R. Zhu. 2007. Simultaneous sorption of organic compounds and phosphate to inorganic-organic bentonites from water. Sep. Purif. Technol. 54:71-76.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37020-
dc.description.abstract多環芳香烴碳氫化合物(PAHs)具疏水性,屬於致癌物質,大量工業廢水排放導致水中PAHs濃度上升,造成環境嚴重衝擊。因此如何將PAHs從水中移除已成非常重要的課題。 本研究利用共沉澱方法合成Mg2Al-(NO3-) LDH (2:1LDH),再以離子交換方式將化學界面活性sodium dodecyl sulfate (SDS) 及生物界面活性劑 rhamnolipid (RL)修飾2:1LDH合成SDS-LDH及RL-LDH作為移除水中Naphthalene (NaP)、Acenaphthylene (AcPy)以及Acenaphthene (AcP)等三種PAHs之吸附劑。等溫吸附實驗結果顯示,相同重量的RL-LDH對於NaP的吸附能力較SDS-LDH高,主要是因為RL-LDH 層間間距較大,有機碳含量高,因此對於NaP有較多的分配位置,故對於水中NaP的移除效率較大。動力吸附實驗結果顯示,SDS-LDH以及RL-LDH移除水中NaP經反應15分鐘後即可達到平衡,並較適合以Elovich方程式來描述。溫度效應結果顯示,SDS-LDH以及RL-LDH對於NaP的移除量會隨著溫度增加而降低。當改變初始pH以及離子強度對於SDS-LDH以及RL-LDH對於NaP的移除量影響是較小的。PAHs間物種的影響結果顯示,RL-LDH對於疏水性較高的AcPy有較大的吸持含量,其次為AcP,最低者為NaP。回收再利用試驗結果得知,RL-LDH重複利用數可達五次以上,且仍有75 %的移除效率 。經由生物界面活性劑(RL)與化學界面活性劑(SDS)修飾後之LDH皆能對水中PAHs有良好的移除效果,並且以RL-LDH對於PAHs具有更大的移除效果。RL 相較於 SDS 毒性低,同時RL-LDH並具有可重複利用性,因此對水中PAHs的移除,RL-LDH是一種具有潛力及對環境友善的吸附劑。zh_TW
dc.description.abstractSorption is a common treatment for removing pollutants from natural environments. The sorption of polycyclic aromatic hydrocarbons (PAHs) by layered double hydroxide (LDHs) and surfactant modified LDHs had been investigated. Mg2-Al (NO3) LDH has been synthesized by co-precipitation method with interlayer nitrate and the Mg/Al molar ratio was 2. Chemical synthesis surfactant sodium dodecyl sulfate (SDS) and biosurfactant rhamnolipid (RL) modified LDHs, SDS-LDH and RL-LDH, were synthesized by ion exchange method. The experimental results indicated that more organic carbon content and larger interlayer spacing lead RL-LDH sorb more naphthalene (NaP) than SDS-LDH. The fitted sorption data revealed that the Elovich model could be best described the sorption kinetics, respectively. The temperature has significantly influenced sorption of NaP on SDS-LDH and RL-LDH : lower temperature leads to more sorption capacity. The sorption process was almost unaffected by NaP initial pH and ionic strength. Additionally, acenaphthene (AcP) and acenaphthylene (AcPy) could be sorbed more than NaP by RL-LDH cause of the higher octanol-water partition coefficient.The desorption and reuse experiments revealed that RL-LDH could be used more than 5 times and the removal efficiency is higher than 75% Consequently, RL-LDH has low toxicity and reuse ability make it be a potential adsorbent for organic pollutant removal from aqueous solution.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:17:58Z (GMT). No. of bitstreams: 1
ntu-97-R95623003-1.pdf: 3059101 bytes, checksum: 1ad057c2be5fbe7e2f231fb39f1d71c0 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目 錄
口試委員審定書…………………………………………………………I
誌謝……………………………………………………………………...II
中文摘要………………………………………………………………..III
英文摘要………………………………………………………………...V
目錄……………………………………………………………………..VI圖目錄…………………………………………………………………..IX
表目錄………………………………………………………………….XII
第一章 前言…………………………………………………..…………1
第二章 文獻回顧…………………………...………………..……….…3
2-1多環芳香烴化合物的基本性質及危害……………………..………3
2-1-1 多環芳香烴化合物的基本性質………………………………….3
2-1-2多環芳香烴化合物之來源與在環境中的分佈………………..…7
2-1-3多環芳香烴化合物的危害………………………………………...8
2-2 層狀雙氫氧化物之來源與應用…………………………………….9
2-2-1層狀雙氫氧化物…………………………………….……………..9
2-3界面活性劑……………………………………….…………...……15
2-3-1 化學界面活性劑…………………………….……….….………15
2-3-2生物界面活性劑…………………………………….…………....19
2-3-3界面活性劑修飾層狀雙氫氧化物對於水中有機污染物的應用
……………………………………….………………………..…...25
第三章 材料與方法………………….………………………………...29
3-1實驗設計……………………………………………………………29
3-2層狀雙氫氧化物(LDH)之製備………………….…………………30
3-2-1合成Mg2-Al(NO3) LDH…………….………………....................30
3-2-2 製備SDS-LDH…………….……………….................................31
3-2-3 RL-LDH之條件選定及製備…………….………………............31
3-3層狀雙氫氧化物的基本性質…………….………………………...34
3-3-1化學組成分析…………….………………………........................34
3-3-2. X光繞射分析…………….……………………….......................35
3-3-3. 官能基之測定…………….……………………….....................35
3-3-4. 電子顯微鏡…………….……………………….........................36
3-4水中多環芳香烴化合物之配製及測定……………………………37
3-5吸附實驗…………….………………………….…………...……...41
3-5-1. 動力吸附…………….………………………….…………...….41
3-5-2. 等溫吸附…………….………………………….…………...….42
3-5-3. 溫度效應…………….………………………….…………...….42
3-5-4. pH值效應…………….………………………….…………...…43
3-5-5. 離子強度影響…………….………………………….…………43
3-5-6. 競爭效應…………….………………………….…………........44
3-6 脫附實驗及吸附劑回收再利用效益…………….………………..45
3-6-1. 脫附實驗…………….………………………….…………........45
3-6-2. 吸附劑回收再利用效益…………….………………………….45
第四章 結果與討論…………….………………………….…………46
4-1 吸附劑基本性質之探討…………….………………………….….46
4-2吸附實驗…………….………………………….…………...……...72
4-2-1 等溫吸附實驗…………….………………………….………….72
4-2-2 動力吸附實驗…………….………………………….…….........76
4-2-3 溫度效應…………….………………………….…….................80
4-2-4 初始pH效應…………….………………………….……………81
4-2-5 離子強度效應…………….………………………….………….84
4-2-6 PAHs物種間的影響…………….………………………….….....86
4-3 脫附及回收再利用試驗…………….………………………….….88
第五章 結論…………….………………………….…..........................90
第六章 參考文獻…………….………………………………………...92

圖目錄
圖一、美國環保署列為16 種優先處理之多環芳香烴化合物…………4
圖二、層狀雙氫氧化物之結構示意圖………….…………….………10
圖三、等溫吸附曲線之四種型態………….…………….……………..12
圖四、界面活性劑濃度對表面張力、界面張力及污染物溶解度影響之
概要圖………….…………….……………….…………….…..17
圖五、界面活性劑於臨界微胞濃度前後之結構示意圖.……………...17
圖六、生物界面活性劑rhamnolipid (R1及R2)之結構式及化學式…..22
圖七、Naphthalene之GC/FID分析圖譜………………….……………39
圖八、Acenaphthylene之GC/FID分析圖譜……….…………………...39
圖九、Acenaphthene之GC/FID分析圖譜…….………………………..40
圖十、NaP、AcPy及AcP濃度為2 mg L-1之GC/FID分析圖譜…….…40
圖十一、 Mg2-Al-(NO3) LDH (2:1LDH)之X-ray 繞射光譜圖…….…47
圖十二、LDH及CLDH對於rhamnolipid插層效應的影響….………..51
圖十三、rhamnolipid濃度對於插層效應的影響….………….………. 52
圖十四、不同溫度對於rhamnolipid插層效應的影響….………..……54
圖十五、不同固液比對於rhamnolipid插層效應的影響….…………...56
圖十六、不同反應時間對於rhamnolipid插層效應的影響….……….58
圖十七、2θ為3到50o時LDH、SDS-LDH及RL-LDH之X-ray繞射
光譜圖….……….……….………….……….………….…………60
圖十八、2θ為0.5到10o時LDH、SDS-LDH及RL-LDH之X-ray繞
射光譜圖……….………….………….………….………….…….61
圖十九、2:1LDH、SDS-LDH及RL-LDH之結構示意圖…….….….63
圖二十、2:1LDH、SDS-LDH及RL-LDH之SEM影像圖示…….……65
圖二十ㄧ、2:1LDH、SDS、SDS-LDH、RL及RL-LDH之FTIR光譜圖…….………….………….…….………….………….…………68
圖二十二、2:1LDH、SDS-LDH及RL-LDH對NaP之等溫吸附曲線………….………….………….………….………….…….……74
圖二十三、2:1LDH、SDS-LDH及RL-LDH對NaP之動力吸附曲線…77
圖二十四、2:1LDH、SDS-LDH及RL-LDH對於NaP(a)一級,(b)二級,(c)Elovich之線性迴歸動力吸附實驗…….………….………78
圖二十五、SDS-LDH及RL-LDH在不同溫度下對於NaP吸附結果...80
圖二十六、SDS-LDH及RL-LDH在不同溫度下對於NaP吸附結果...83
圖二十七、不同pH對於Mg3-Al(NO3) LDH及SDS-LDG中Mg 及 Al
溶解度之影響…….………….………….………….…………..83
圖二十八、RL-LDH對NaP再利用及脫附效率…….………………..85
圖二十九、AcP及AcPy對於RL-LDH吸持NaP之影響.……….………87
圖三十、RL-LDH對於NaP脫附試驗及回收再利用次數之吸附結果……….…………….…………….…………….…………….…89

表目錄
表一、16種PAHs之物化特性……….…………….…………….………5
表二、四種常見之陰離子型界面活性劑……….…………….………26
表三、不同條件下所製備而成之RL-LDH及其命名……….….……33
表四、Mg2-Al-(NO3) LDH之組成特性……….…………….…………48
表五、2:1 LDH, SDS-LDH 及 RL-LDH之FTIR圖譜資料…………..69
表六、LDH、SDS-LDH及RL-LDH之組成特性……….…………….71
表七、2:1LDH、SDS-LDH及RL-LDH之化學組成分析和結構式….71
表八、SDS-LDH及RL-LDH對NaP之等溫吸附實驗參數……….…75
表九、2:1LDH、SDS-LDH及RL-LDH對NaP之動力吸附參數………79
dc.language.isozh-TW
dc.subject分配zh_TW
dc.subject層狀雙氫氧化物zh_TW
dc.subject多環芳香烴化合物zh_TW
dc.subject生物界面活性劑zh_TW
dc.subject吸附zh_TW
dc.subjectadsorptionen
dc.subjectpartitionen
dc.subjectLayered double hydroxides (LDHs)en
dc.subjectpolycyclic aromatic hydrocarbons (PAHs)en
dc.subjectbiosurfactanten
dc.title利用SDS與rhamnolipid修飾之層狀雙氫氧化物(LDH)移除水中多環芳香烴化合物(PAHs)zh_TW
dc.titleRemoval of polycyclic aromatic hydrocarbons (PAHs) by SDS and rhamnolipid modified layered double hydroxides (LDH) in aqueous solutionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor鄒裕民
dc.contributor.oralexamcommittee李達源,何聖賓,張嘉修
dc.subject.keyword層狀雙氫氧化物,多環芳香烴化合物,生物界面活性劑,吸附,分配,zh_TW
dc.subject.keywordLayered double hydroxides (LDHs),polycyclic aromatic hydrocarbons (PAHs),biosurfactant,adsorption,partition,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2008-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved