請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37016
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃德富 | |
dc.contributor.author | Shih-Han Wang | en |
dc.contributor.author | 王士函 | zh_TW |
dc.date.accessioned | 2021-06-13T15:17:55Z | - |
dc.date.available | 2008-08-14 | |
dc.date.copyright | 2008-08-14 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-24 | |
dc.identifier.citation | Abu-Amer Y., Darwech I., Otero J.. Role of the NF-kappaB axis in immune modulation of osteoclasts and bone loss. Autoimmunity. 2008 Apr; 41(3):204-11.
Akira S. and Takeda K.. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499–511. Akira S., Uematsu S. and Takeuchi O.. Pathogen recognition and innate immunity. Cell. 2006 Feb 24;124(4):783-801. Andrews RK., Gardiner EE., Shen Y. and Berndt MC.. Structure-activity relationships of snake toxins targeting platelet receptors, glycoprotein Ib-IX-V and glycoprotein VI. Curr Med Chem Cardiovasc Hematol Agents. 2003 Jun;1(2):143-9. Barja-Fidalgo C., Coelho A.L.J., Saldanha-Gama R., Helal-Neto E., Mariano –Oliveira A. and de Freitas M.S.. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions. Brazilian Journal of Medical and Biological Research 2005, 38: 1513-1520. Bowdish DM., Loffredo MS., Mukhopadhyay S., Mantovani A. and Gordon S.. Macrophage receptors implicated in the 'adaptive' form of innate immunity. Microbes Infect. 2007 Nov-Dec;9(14-15):1680-7. Epub 2007 Sep 14. Bowie, A., and O’Neill, L.A.. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J. Leukoc. Biol. 2000, 67, 508–514. Choe J., Kelker M.S. and Wilson I.A.. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 2005, 309, 581–585. Feldmann M. and Maini R.N. Lasker clinical medical research award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med. 2003, 9, 1245–1250. Flaster H., Bernhagen J., Calandra T. and Bucala R.. The macrophage migration inhibitory factor-glucocorticoid dyad: regulation of inflammation and immunity. Mol Endocrinol. 2007 Jun;21 (6):1267-80. Epub 2007 Mar 27. Giancotti FG.. Complexity and specificity of integrin signaling. Nature Cell Biology 2000, 2: E13-E14. Greten FR. and Karin M. The IKK ⁄ NF-kappaB activation pathway– a target for prevention and treatment of cancer. Cancer Lett 2004; 206: 193–9. Hsieh CF., Chang BJ., Pai CH., Chen HY., Tsai JW., Yi YH., Chiang YT., Wang DW., Chi S., Hsu L. and Lin CH.. Stepped changes of monovalent ligand-binding force during ligand-induced clustering of integrin αIIBβ3. J Biol Chem. 2006 Sep 1;281 (35):25466-74. Epub 2006 Jun 21. Huang TF., Chang MC., Peng HC. and Teng CM.. A novel alpha-type fibrinogenase from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 1992 Dec 28;1160(3):262-8. Hynes RO.. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992, 69: 11-25. Karin M. and Greten FR.. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–59. Kogut MH., He H. and Kaiser P.. Lipopolysaccharide binding protein/CD14/ TLR4-dependent recognition of salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro -inflammatory cytokine and chemokine gene expression in these cells. Anim Biotechnol. 2005;16(2):165-81. Lanthan LO. and Staggers SL.. Ancrod: the use of snake venom in the treatment of patients with heparin-induced thrombocytopenia and thrombosis undergoing coronary artery bypass grafting: nursing management. Heart Lung. 1996 Nov-Dec;25(6):451-60; quiz 461-2. Review. Lin WW. and Karin M.. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest 2007; 117, 1175–1183. Maeda S. and Omata M.. Inflammation and cancer: Role of nuclear factor -kappaB activation. Cancer Sci 2008 May;99(5):836-42. Epub 2008 Feb 24. Marsh N. and Williams V. Practical applications of snake venom toxins in haemostasis. Toxicon 2005 Jun 15;45(8):1171 -81. Epub 2005 Apr 7. McLane MA., Marcinkiewicz C. and Vijay-Kumar S. et al.. Viper venom disintegrins and related molecules. Proceedings of the Society for Experimental Biology and Medicine 1998; 219: 109-119. Miloso M., Scuteri A., Foudah D. and Tredici G.. MAPKs as mediators of cell fate determination: an approach to neurodegenerative diseases. Curr Med Chem. 2008;15(6):538-48. Review. Monick MM., Powers L., Butler N., Yarovinsky T. and Hunninghake GW.. Interaction of matrix with integrin receptors is required for optimal LPS-induced MAP kinase activation. Am J Physiol Lung Cell Mol Physiol 2002 Aug;283(2):L390-402. Moura-da-Silva A. M., Butera D. and Tanjoni I.. Importance of Snake Venom Metalloproteinases in Cell Biology: Effects on Platelets, Inflammatory and Endothelial Cells. Current Pharmaceutical Design 2007, 13, 2893-2905. Narendra Sharath Chandra J.N., Ponnappa K.C., Sadashiva C.T., Priya B.S., Nanda B.L., Veerabasappa Gowda T., Vishwanath B.S. and Rangappa K.S.. Chemistry and Structural Evaluation of Different Phospholipase A2 Inhibitors in Arachidonic Acid Pathway Mediated Inflammation and Snake Venom Toxicity. Current Topics in Medicinal Chemistry, 2007, 7, 787-800. Nemzek JA., Hugunin KM. and Opp MR.. Modeling sepsis in the laboratory: merging sound science with animal well-being. Comp Med 2008 Apr;58(2):120-8. Petricevich VL.. Cytokine and nitric oxide production following severe envenomation. Curr Drug Targets Inflamm Allergy 2004 Sep;3(3):325-32. Porter JC. and Hogg N. Integrins take partners: cross-talk between integrins and other membrane receptors. Trends in Cell Biology 1998;8: 390-396. Rajendra W., Armugam A. and Jeyaseelan K.. Toxins in anti-nociception and anti-inflammation. Toxicon. 2004 Jul;44(1):1-17. Review. Erratum in: Toxicon. 2005 Jun 1;45(7):945. Reiss K., Ludwig A. and Saftig P.. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther 2006 Sep;111(3):985-1006. Epub 2006 Apr 19. Rigamonti E., Chinetti-Gbaguidi G. and Staels B.. Regulation of macrophage functions by PPAR-α, PPAR-β, and LXRs in mice and men. Arterioscler Thromb Vasc Biol 2008;28:1050-1059. Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K. and Kimoto M.. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med 1999; 189, 1777–1782. Siebenlist U. Brown K. and Claudio E.. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 2005;5: 435–45. Tseng YL., Peng HC. and Huang TF.. Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci. 2004 Sep-Oct;11(5):683-91. Vishwanath S., Fawzy AA. and Franson RC.. Edema-inducing activity of phospholipase A2 purified from human synovial fluid and inhibition by aristolochic acid. Inflammation 1988, 12(6), 549-561. Yoshimura A.. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 2006 Jun;97(6):439-47. Zhang X. and Mosser DM.. Macrophage activation by endogenous danger signals. J Pathol. 2008 Jan;214(2):161-78. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37016 | - |
dc.description.abstract | 巨噬細胞在內生性免疫反應以及發炎反應上扮演相當重要的角色。透過其細胞表面上的受體,能夠辨認外來的因子,引發免疫反應,同時巨噬細胞的附著功能在免疫系統上也是很重要的關鍵,使其能夠快速的聚集、移動和穿透,而發揮他們的功能。在馬來亞蝮蛇(Calloselasma rhodostoma)蛇毒蛋白中已純化出許多功能的蛋白,其中包括了抑制細胞附著的分子,並且也有抑制發炎反應之研究報告。本實驗中將CRV原毒進行純化,以DEAE-Sephadex A-50管柱分離出的第一分劃,再經CM-Sephadex C-50管柱收取第三分劃部分,最後以FPLC Superdex G75膠質過濾管柱純化而得到最終具有抑制巨噬細胞發炎性細胞激素釋放的CRV F3-5蛇毒蛋白,其分子量為22,186 Da,它不具有蛋白質分解酶之活性,亦不具有PLA2之酵素活性;而在抑制巨噬細胞受到LPS活化後釋放發炎性細胞激素之測試中,F3-5蛇毒蛋白10 μg/ml (約0.45μM)能夠抑制LPS 200 ng/ml在原生性小鼠巨噬細胞引發之IL-6釋放,同時也能夠有效的抑制低濃度LPS (100 ng/ml)在原生性巨噬細胞以及細胞株RAW巨噬細胞引發之TNF-α釋放反應。在貼附性試驗當中,CRV F3-5蛇毒蛋白(10μg/ml)具有降低巨噬細胞受到LPS刺激活化之後所提高的附著性作用。對於LPS刺激活化巨噬細胞之後所產生的下游訊息傳遞鏈之中,我們檢視了MAPK路徑中的三種重要激酶:p-38、ERK以及JNK的被活化(磷酸化)現象,結果發現到此三種激酶的活化在給予F3-5蛇毒蛋白之後都有被抑制的現象發生。最後再經由流式細胞儀分析原生性巨噬細胞表面上TLR4的表現,發現F3-5蛇毒蛋白(10μg/ml)存在時,可抑制TLR4 mAb對原生性小鼠巨噬細胞上TLR4的結合反應。綜上所述,由馬來亞蝮蛇蛇毒中所純化出的CRV F3-5蛇毒蛋白,具有對抗LPS所引起的巨噬細胞釋放發炎性細胞激素作用,而此抑制性作用,至少有部分,是透過對巨噬細胞表面上TLR4受體的影響,進而減少下游包括p-38、ERK以及JNK的磷酸化而來,詳細的作用機轉則有待更多的實驗證明。 | zh_TW |
dc.description.abstract | Macrophages play a pivotal role in inflammation and innate immune responses. Foreign substances recognized by macrophages trigger a serial of signaling cascades upon ligand–receptor stimulation through receptors expressed on cell surface resulting in release of several pro-inflammatory and anti-inflammatory cytokines, and the activation of other immune cells. In the meanwhile, macrophages adhesion is a key event within the immune system. Relying on the receptors or integrins function, macrophages perform recruitment, migration and infiltration to the infected site from the bloodstream. Among the Malaysia viper (Calloselasma rhodostoma) venom, many types of functional snake venom proteins have been discovered, including the anti-adhesive molecules reported in anti-inflammatory literatures. The fraction 3-5 (F3-5) protein isolated from Calloselasma rhodostoma crude venom (CRV), has a molecular weight 22,186 Da, devoid of fibrinogenolytic, azocaseinolytic and PLA2 activities. F3-5 10μg/ml (0.45μM) inhibited the LPS (200ng/ml)-induced IL-6 release of primary mice macrophages, and also the release of TNF-α of primary macrophages and RAW macrophages stimulated by lower concentration (100ng/ml) LPS. In the cell adhesion assay, F3-5 (10μg/ml ) significantly reduced the augmented adhesive activity of macrophages caused by LPS stimulation. We also observed that F3-5 significantly inhibited the phosphorylation of p-38, ERK and JNK of macrophages stimulated by LPS, assayed by Western blot. Furthermore, F3-5 (10μg/ml) as well as LPS (1μg/ml), significantly inhibited the binding of TLR4 mAb to macrophages as evaluated by flow cytometric analysis. Taken together, the purified active component CRV F3-5 exhibits inhibitory effect on LPS-stimulated IL-6 and TNF-α release of primary macrophages and RAW cells at least partly through TLR4 blockade and the inhibition on the subsequent phosphorylation of p-38, ERK and JNK. However, the detailed mechanism of its action needs further investigations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:17:55Z (GMT). No. of bitstreams: 1 ntu-97-R95443021-1.pdf: 3171028 bytes, checksum: 7d138397db73a214627c21bae385548a (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 中文摘要 …………………………………………………………………………….i
Abstract …………………………………………………………………………….iii 縮寫表 …………………………………………………………………………….v 第一章 緒論 ………………………………………………………………………1 1.1 發炎反應 ..………………………………………………………………....1 1.1.1 巨噬細胞 ……………………………………………………………1 1.1.2 NF-κB的活化 ………………………………………………………3 1.1.3 巨噬細胞與其受體功能 …………………………………………..4 1.1.4 Toll-Like Receptor家族 ………………………………………5 1.1.5 敗血症 ……………………………………………………………6 1.2 馬來亞蝮蛇 Calloselasma rhodostoma …………………………………...7 1.2.1 PLA2(phospholipase A2) …………………………………….8 1.2.2 integrins與disintegrins ……………………………………...9 1.3 白血球(leukocytes)與disintegrin ………………………………………...11 1.4 蛇毒蛋白與發炎反應 ………………………………………………….12 第二章 實驗材料 ………………………………………………………………..21 2.1 馬來亞蝮蛇原毒 …...…………………………………………………… 21 2.2 液態管柱層析 ……………………………………………………………21 2.3 細胞培養用品 ………………………………………………………..21 2.4 電泳及西方點墨轉漬法(Western blots) ……………………………..22 2.5 單株抗體 ……………………………………………………………..22 2.6 TNF-α及IL-6含量之測定 ………..……………………………………23 2.7 細胞附著試驗(cell adhesion assay) …………………………….23 第三章 實驗方法 …………………………………………………………………24 3.1 馬來亞蝮蛇原毒(CRV)純化過程 ……………………………………24 3.2 蛇毒蛋白分子量之測定 ………………………………………………24 3.3 原生性小鼠巨噬細胞(primary macrophage)製備方式 ………………24 3.4 蛇毒蛋白抑制巨噬細胞釋放發炎性細胞激素之測定 ………………25 3.5 MTT試驗 …………………………………………………………26 3.6 azo-caseinolytic assay ……………………………………………26 3.7 Fibrinogenolytic assay …………………………………………26 3.8 CRV F3-5蛇毒蛋白之PLA2活性測試(溶血性試驗) ………27 3.9 流式細胞儀分析原生性巨噬細胞純度 …………………………….27 3.10 細胞附著性試驗(cell adhesion assay) …………………………………..28 3.11 西方點墨轉漬免疫分析(Western blot analysis) ………………………28 3.12 流式細胞儀測定CRV F3-5蛇毒蛋白與巨噬細胞表面受體 TLR4結合能力 …………………………………………………………29 3.13 統計方法 ...……………………………………………………………30 第四章 實驗結果 ………………………………………………………………31 4.1 馬來亞蝮蛇蛇毒中抑制發炎反應蛋白之純化 …………………………31 4.2 CRV中F3-5蛋白對引起巨噬細胞凋亡之影響 ………………………32 4.3 CRV中F3-5蛋白對巨噬細胞釋放發炎性細胞激素之影響 …………33 4.4 CRV F3-5蛋白對巨噬細胞附著性之影響 ……………………………34 4.5 CRV F3-5蛇毒蛋白對於LPS引發巨噬細胞內p-38活化之影響 ……35 4.6 CRV F3-5蛇毒蛋白對於LPS引發巨噬細胞內ERK活化之影響 ……36 4.7 CRV F3-5蛇毒蛋白對於LPS引發巨噬細胞內JNK活化之影響 ……36 4.8 流式細胞儀分析CRV F3-5對於巨噬細胞表面TLR4受體結合能力…37 第五章 討論 ………………………………………………………………………55 5.1 CRV F3-5蛇毒蛋白抑制LPS所引起巨噬細胞釋放發炎性細胞激素 …58 5.2 巨噬細胞的附著性改變 …………………………………………………59 5.3 CRV F3-5蛋白對LPS引發巨噬細胞內訊息傳遞路徑之影響 ………61 5.4 CRV F3-5蛇毒蛋白對巨噬細胞表面TLR4之影響 ……………………62 第六章 結論與展望 ………………………………………………………………65 參考文獻 …………………………………………………………………….…….66 | |
dc.language.iso | zh-TW | |
dc.title | 馬來亞蝮蛇蛇毒蛋白F3-5抑制LPS引起巨噬細胞釋放發炎性細胞激素機轉之探討 | zh_TW |
dc.title | Effects of Calloselasma rhodostoma snake venom protein, F3-5, on LPS-induced inflammatory cytokines release of macrophages | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧哲明,顏茂雄,楊春茂 | |
dc.subject.keyword | 發炎反應,巨噬細胞,訊息傳遞,蛇毒蛋白,細胞激素, | zh_TW |
dc.subject.keyword | inflammation,macrophage,signal transduction,snake venom,cytokine, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-25 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。