請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36994完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳林祈 | |
| dc.contributor.author | Jing-Yang Chiu | en |
| dc.contributor.author | 邱景揚 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:17:38Z | - |
| dc.date.available | 2011-07-30 | |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-25 | |
| dc.identifier.citation | Arai, G., M. Masuda, and I. Yasumori. 1992. Sol-gel Materials for Electrochemical Biosensors. Chemistry Letters. 399: 1791-1794.
Bartlett, P. N., and J. M. Cooper.1993. A Review of the Immobilization of Enzymes in Electropolymerized Films. J. Electroanal. Chem. 362: 1-12. Cass, A. E. G., G. Davis, G. D. Francis, A. H. Allen, and O. Hill. 1984. A Glucose Biosensor Operating Under Non-isothermal Conditions: the Dynamic Response. Biosens. Bioelectron. 56: 667-671. Chi Q., and S. Dong. 1995. Amperometric Biosensors based on the Immobilization of Oxidases in a Prussian Blue Film by Electrochemical Codeposition. Analytica Chimica Acta. 310: 429-436. Clark, L. C., and C. Lyons. 1962. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. NY Acad. Sci. 148(133): 29-45. Clark, L. C. and E.W. Clark. 1987. A personalized history of the Clark oxygen electrode. Int. Anesthesiol. Clin. 25(3): 1-29. de Mattos, I. L., L. V. Lukachova, L. Gorton, T. M. Laurell, and A. A. Karyakin. 2001. Evaluation of Glucose Biosensors based on Prussian Blue and Lyophilised, Crystalline and Cross-linked Glucose Oxidases (CLEC). Talanta. 54 (5): 963-974. Derwinska, K., K. Miecznikowski, R. Koncki, P. J. Kulesza, S. Glab, and M. A. Malik. 2003. Application of Prussian Blue Based Composite Film with Functionalised Organic Polymer to Construction of Enzymatic Glucose Biosensor. Electroanalysis. 15(23-24): 1843-1849. Ernst A., O. Makowski, B. Kowalewska, K. Miecznikowski, and P. J. Kulesza. 2007. Hybrid Bioelectrocatalyst for Hydrogen Peroxide Reduction: Immobilization of Enzyme within Organic-Inorganic Film of Structured Prussian Blue and PEDOT. Bioelectrochemistry. 71: 23-28. Foulds, N.C., and C.R. Lowe. 1988. Immobilization of Glucose Oxidase in Ferrocene- Modified Pyrrole Polymers. Anal. Chem. 60(22): 2473. Garcia-Jareno, A., J. Navarro-Laboulais, and F. Vicente. 1996. Electrochemical Study of Nafion Membranes/Prussian Blue Films on ITO Electrodes. Electrochim. Acta 41(17): 2675–2682. Gorton, L., and E. Dominguez. 2002. Electrocatalytic Oxidation of NADH at Mediator -modified Electrodes. Mol. Biotechnol. 82: 371-392. Guilbault, G. G., G. J. Lubrano, and D. N. Gray. 1973. Glass-Metal Composite Electrodes. Anal. Chem. 45: 2255-2259. Haghighi, B., S. Varma, F. M. Alizadeh Sh., Y. Yigzaw, and L. Gorton. 2004. Prussian Blue Modified Glassy Carbon Electrodes: Study on Operational Stability and Its Application as a Sucrose Biosensor. Talanta. 64: 3-12. Hale, P. D., L. I. Boguslavsky, T. Inagaki, H. I. Karan, T.A. Skotheim, and Y. Okamoto. 1991. Poly(o-aminophenol) Bienzyme Carbon Paste Electrode for the Detection of Uric Acid. Analytica Chemica Acta. 63: 677-682. Harwood, G. W. J. and C. W. Pouton. 1996. Amperometric Enzyme Biosensors For the Analysis of Drugs and Metabolites. Advanced Drug Delivery Reviews. 18(2): 163-191. Hell, A. D. 1990. Investigation of noninvasive measurement of blood glucose. International Diabetes Federation Congress Washington. D.C. June: 24. Itaya, J., N. Shoji, and I. Uchida. 1995. Biosensors for Environmental Applications. Electroanalysis. 17: 92-94. Jaffari, S. A., and J. C. Pickup, 1996. Novel Hexacyanoferrate(III)-modified Carbon Electrodes: Application in Miniaturised Biosensors with Potential for In Vivo Glucose Sensing. Biosens. Bioelectron. 11 (11): 1167-1175. Jaffari, S. A., A. P. F. Turner. 1997. Novel Hexacyanoferrate(III) Modified Graphite Disc Electrodes and Their Application in Enzyme Electrodes (part I). Biosens. Bioelectron. 12: 1-9. Jonas, F., G. Heywang, W. Schmidtberg, and J. Heinze. 1988. Eur. Pat. 339-340. Kajiya Y., Hiroko Sugai, Chiaki Iwakura, and Hiroshi Yoneyama. 1991. Glucose Sensitivity of Polypyrrole Films Containing Immobilized Glucose Oxidase and Hydroquinonesulfonate Ions. Anal. Chem., 63 (1): 49. Kaku, T., H. I. Karan, and Y. Okamoto. 1994. Pesticide Determination in Tap Water and Juice Samples using Disposable Amperometric Biosensors Made using Thick-film Technology. Analytica Chimica Acta. 66: 1231-1235. Kauffmann, J. M., and G. J. Patriarche. 1993. Designing an Amperometric Thick-film Microbial BOD sensor. Talanta. 40: 1157-1162. Kayakin, A. A., O. V. Gitelmacher, and E. E. Kayakina. 1995. Prussian Blue Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose. Anal. Chem. 67(14): 2419-2423. Karyakin, A. A., E. E. Karyakina, and L. Gorton. 1996. Prussian-Blue based ampero- metric biosensors in flow-injection analysis. Talanta. 43:1597-1606. Karyakin, A. A., and E. E. Karyakina. 1999. Prussian Blue-Based ‘Artificial Peroxidase’ as a Transducer for Hydrogen Peroxide Detection: Application to Biosensors. Sens. Actuators B: Chem. 57: 268–273. Karyakin, A. A., E. E. Karyakina, and L. Gorton. 2000. Amperometric Biosensor for Glutamate Using Prussian Blue-Based “Artificial Peroxidase” as a Transducer for Hydrogen Peroxide. Anal. Chem. 72: 1720-1723. Karyakin, A. A. 2001. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis. 13: 813-819. Karyakin, A. A., E. A. Kotel’nikova, L. V. Lukachova, A. A. Karyakina, and J. Wang. 2002. Optimal Environment for Glucose Oxidase in Perfluorosulfonated Ionomer Membranes: Improvement of First-generation Biosensors. Biosens. Bioelectron. 74 (7): 1597-1603. Kudo H., T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki and K. Mitsubayashi. 2006. A Flexible and Wearable Glucose Sensor Based on Functional Polymers with Soft-MEMS Techniques. Biosens. Bioelectron. 22: 558-562. Kulys, J., H. E. Hansen, T. B. Rasmussen, and M. Ozsoz. Bioelectric Recognition Assay (BERA). Analytica Chimica Acta. 288: 193-196. Lane, R. F., and A. T. Hubbard. 1973. Electrochemistry of Chemisorbed Molecules. I. Reactants Connected to Electrodes through Olefinic Substituents. J. Phy. Chem. 77(11): 1401-1410. Li. C., J. Han and C. H. Ahn. 2007. Flexible Biosensors on Spirally Rolled Micro Tube for Cardiovascular In Vivo Monitoring. Biosens. Bioelectron. 22: 1988-1993. Lin, M. S., W. C. Shih. 1999. Chromium Hexacyanoferrate Based Glucose Biosensor. Anal. Chim. Acta 381: 183-189. Lin, T. -H., and K. -C. Ho. 2005. A Complementary Electrochromic Device Based on Polyaniline and Poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells. 90: 506-520. Mateo, C., J. M. Palomo, G. F. Lorente, J. M. Guisan, and R. F. Lafuente. 2007. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzyme Microb. Technol. 40(6): 1451-1463. Neff, V.D. 1978. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. J. Electrochem. Soc. 125: 886. Nien, P.C., T. S. Tung, K. C. Ho. 2006. Amperometric Glucose Biosensor Based on Entrapment of Glucose Oxidase in a Poly(3,4-ethylenedioxythiophene) Film. Electroanalysis. 18: 1408-1415. Oyama, T. J., R. Rajagopalan and A. Heller. 1993. Cellular Biosensors for Drug Discovery. Analytica Chimica Acta. 65: 3512-3517. Pickup, J. C., F. Hussain, N. D. Evans and N. Sachedina. 2005. In Vivo Glucose Monitoring: The Clinical Reality and the Promise. Biosens. Bioelectron. 20: 1897-1902. Rajagopalan, R., T. J. Ohara, and A. Heller. 1994. Electrical Communication between Glucose Oxidase and Electrodes Based on Poly(Vinyl Imidazole) Complex of Os(bpy)2Cl2. Defense Technical Information Center (DTIC): ADA276585. Rauh, R. D., F. Wang, J. R. Reynolds and D. L. Meeker. 2001. High Coloration Efficiency Electrochromics and Their Application to Multi-color Devices. Electrochem. Acta. 46: 2023-2029 Santos, A. de S., L. Gorton and L. T. Kubota. 2002. Electrocatalytic NADH Oxidation Using an Electrode Based on Meldola Blue Immobilized on Silica Coated with Niobium Oxide. Electroanalysis. 14(12): 805-812. Santucci, M., M. Portaccio, S. Rossi, U. Bencivenga, F.S. Gaeta and D.G. Mita. 1999. A Glucose Biosensor Operating under Non-isothermal Conditions the Dynamic Response. Biosens. Bioelectron. 14: 737-747. Schreirer, T. M., J. J. Rach, and G. E. Howe. 1996. Efficacy of Formalin, Hydrogen Peroxide, and Sodium Chloride on Fungal-infected Rainbow Trout Eggs. Aquaculture. 140: 323-331. Shirakawa, H., E.J. Lewis, A.G. Macdiarmid, C.K. Chiang, and A.J. Heeger. 1977. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 16: 578-580. Stilwell, D., K. H. Park, and M. H. Miles. 1992. Electrochemical studies of the factors influencing the cycle stability of Prussian Blue films. J. Appl. Electrochem. 22: 325-331. Tseng, K. -S., L. -C. Chen, K.-C. Ho. 2005. Amperometric Detection of Hydrogen Peroxide at a Prussian Blue-Modified FTO Electrode. Sen. Actuators B. 108: 738-745 Ulasova, E.A., L. Micheli, L. Vasii, D. Moscone, G. Palleschi, S. V. Vdovichev, A. V. Zorin, S. A. Krutovertsev, E. E. Karyakina, and A. A. Karyakin. 2003. Flow-injection Analysis of Residual Glucose in Wines Using a Semiautomatic Analyzer Equipped with a Prussian-Blue Based Biosensor. Electroanalysis. 15(5-6): 447-451. Updike, S. J., and G. P. Hicks. 1967. The Enzyme Electrode. Nature. 214(92): 986-988. Wang, J., and L. Angnes. 1992. Miniaturized Glucose Sensors Based on Electrochemical Codeposition of Rhodium and Glucose Oxidase onto Carbon-Fiber Electrodes. Anal. Chem. 64(4): 456-459. Wang, J. 1994. Decentralized Electrochemical Monitoring of Trace Metals: From Disposable Strips to Remote Electrodes. Analyst. 119: 763. Zen, J.M., H. H. Chung, and A. Senthil Kumar. 2000. Flow Injection Analysis of Hydrogen Peroxide on Copper-Plated Screen-Printed Carbon Electrodes. Analyst. 125(9): 1633-1637. Zhang, N., T. Wilkop, S. Lee and Q. Cheng. 2007. Bi-functionalization of a Patterned Prussian Blue Array for Amperometric Measurement of Glucose via Two Integrated Detection Schemes. Analyst. 132: 164-172. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36994 | - |
| dc.description.abstract | This study aims to develop a flexible, cost-effective but highly durable and sensitive amperometric glucose sensor for real-time monitoring of blood sugar and cellulose degradation, respectively. To this purpose, we investigated the use of a novel organic/inorganic bilayer, poly(3,4-ethylenedioxythiophene) (PEDOT)/Prussian blue (ferric hexacyanoferrate, namely PB), as an enhanced immobilization layer of glucose oxidase (GOD) on a screen printed carbon electrode.
To assemble the amperometric glucose sensor, a carbon paste electrode (active area = 0.28 cm2) was screen-printed onto a flexible polyester (PET) substrate at first. Then a PB thin film was electrodeposited on the carbon paste electrode as a solid mediator to carry out the electrocatalysis of hydrogen peroxide, a byproduct indicating the glucose oxidation. Subsequently, a thiophene-based conducting polymer thin film, PEDOT, was grown electrochemically on the PB/carbon paste electrode in the presence of both 3,4-ethylenedioxythiophene monomers and GOD molecules. As a consequence, glucose oxidase molecules were entrapped in the PEDOT matrix atop the PB/carbon paste electrode, and an amperometric glucose sensor was thus fabricated. Before using, the sensor was stored in a phosphate buffer, pH 7.4 at 4 oC. In principle, when contacting an analyte solution containing glucose such as a serum sample or a degraded polysaccharide mixture, the GOD molecules inside the PEDOT matrix will specifically oxidize glucose, in the presence of oxygen, to gluconic acid and hydrogen peroxide. Then hydrogen peroxide will penetrate through the PEDOT layer and react with the solid mediator PB, which finally shuttles electrons to the carbon electrode and yields a cathodic current in response to hydrogen peroxide and thereby to glucose. Accordingly, our amperometric sensing experiment was performed by applying a constant potential of -0.1 V vs. Ag/AgCl, and the sensor was tested with a dilution series of glucose solutions in the presence of phosphate buffer, pH 7.4. With flow-injection analysis (FIA) and a sensing potential at -0.1 V vs. Ag/AgCl, the flexible biosensor exhibited a response of < 40 sec, a dynamic range from 100 uM to 30 mM and a sensitivity of 2.1 uA cm-2 mM-1. Also, the biosensor yielded highly reproducible current signals (RSD = 2.54%) and retained ca. 82% of the glucose sensing response after one-month storage at 4 oC. Furthermore, not only detection of cellulose saccharification product but also quantification of the sugar content of a serum was demonstrated successfully by showing high accuracy (RSD = 8.37%) and low interference. Therefore, we consider this new design of glucose sensor based on the PEDOT/PB bilayer is not only novel from the chemistry aspect but also promising for both bioenergy and biomedical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:17:38Z (GMT). No. of bitstreams: 1 ntu-97-R95631010-1.pdf: 2860677 bytes, checksum: 63b80cd42e0df69b3dfcc251fd087eba (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 致謝……………………………………………………………... I
中文摘要……………………………………………………...… II 英文摘要………………………………………………………... III 目錄……………………………………………………………... V 圖目錄………………………………..…………………………. VIII 表目錄………………………………..…………………………. XII 第一章 緒論……………………………………………………. 1 1.1 前言……………………………………………………. 1 1.2 化學修飾電極簡介……………………………………. 3 1.2.1 化學修飾電極之應用………….………………. 3 1.2.2 化學修飾電極之特性………………….………. 4 1.3 酵素固定化方法………………………………………. 4 1.4 網版印刷電極…………………………………………. 6 第二章 文獻回顧與研究目的…………………………………. 7 2.1 文獻回顧………………………………………………. 7 2.2 研究動機與目的…..…….……………………………. 19 2.3 研究架構………………………………………………. 20 第三章 實驗材料與研究方法…………………………………. 21 3.1 儀器設備………………………………………………. 21 3.2 實驗藥品及器材………………………………………. 22 3.3 實驗方法…………………………………………….... 24 3.3.1 基材之前處理………………………………..… 24 3.3.2 網版印刷電極之製作……………………….…. 24 3.3.3 定電位析鍍普魯士藍薄膜…...…………….… 28 3.3.4 PEDOT及葡萄糖氧化.………...…………………30 3.4 電化學分析…………….……………………..………. 33 3.4.1 葡萄糖感測器之電化學特性分析….…………. 33 3.4.2 修飾電極對過氧化氫之感測分析……….……. 33 3.4.3 葡萄糖感測器對葡萄糖之感測分析….………. 35 3.5 流動注射式分析系統之設計與製作………………….. 36 3.5.1 流動注射式分析系統之設計………………….. 36 3.5.2 流動注射式分析系統之製作………..……..… 36 3.5.3 流動注射式分析系統之葡萄糖感測分析…..… 37 3.6 纖維素水解…………………………………………..… 42 第四章 實驗結果與討論………………………………………. 43 4.1 前言……………………………………………………. 43 4.2 網印碳電極表面阻抗之量測…………………………. 44 4.3 普魯士藍薄膜烘烤對操作穩定性之影響…………..… 45 4.4 PEDOT[GOD]薄膜之析鍍特性分析……………….... 48 4.5 PEDOT/PB修飾電極對過氧化氫之感測分析……..… 50 4.5.1 感測過氧化氫之實驗結果………………..…… 52 4.6 酵素電極對葡萄糖之感測分析………………………. 56 4.6.1 葡萄糖之氧化感測分析….……………………. 58 4.6.2 感測平台之建立………….……………………. 61 4.6.3 葡萄糖之還原感測分析…………….…………. 64 4.6.4 纖維素降解葡萄糖之還原感測分析…….….. 70 4.7 無攪拌系統之葡萄糖感測分析……………………… 74 4.8 流動注射式分析之系統最佳化參數……...…………. 81 4.8.1 FIA系統之葡萄糖還原感測分析…...………… 85 4.8.2 血糖與纖維素醣化物之感測分析…...…….… 91 4.8.3 酵素電極之長期穩定性..…….............. 95 第五章 結論與建議……………………………………..….… 101 5.1 結論………………………………………………….… 101 5.2 建議……………………………………………….…… 103 第六章 參考文獻…….…………………...……………….…… 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電流式葡萄糖感測器 | zh_TW |
| dc.subject | 可撓式電極 | zh_TW |
| dc.subject | 聚二氧乙烯 | zh_TW |
| dc.subject | 普魯士藍 | zh_TW |
| dc.subject | 網版印刷 | zh_TW |
| dc.subject | amperometric glucose sensor | en |
| dc.subject | screen printing | en |
| dc.subject | Prussian blue | en |
| dc.subject | 4-ethylenedioxythiophene) | en |
| dc.subject | poly(3 | en |
| dc.subject | flexible electrode | en |
| dc.title | 以普魯士藍/聚二氧乙烯噻吩複合薄膜製備軟性酵素電極與其生物感測應用研究 | zh_TW |
| dc.title | Fabrication of Flexible Enzyme Electrodes based on the Prussian Blue/Poly(3,4-ethylenedioxythiophene) Bilayer
and Its Biosensing Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何國川,陳世銘,陳力騏 | |
| dc.subject.keyword | 電流式葡萄糖感測器,可撓式電極,聚二氧乙烯,普魯士藍,網版印刷, | zh_TW |
| dc.subject.keyword | amperometric glucose sensor,flexible electrode,poly(3,4-ethylenedioxythiophene),Prussian blue,screen printing, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
