Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36982
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖(Jeffrey Chi-Sheng Wu)
dc.contributor.authorI-Hsuan Suen
dc.contributor.author蘇怡萱zh_TW
dc.date.accessioned2021-06-13T15:17:30Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citation1. D.F. Ollis and H. Al-Ekabi. Photocatalytic Purification and Treatment of Water and Air. 1993. Amsterdam: Elsevier.
2. A. Mills and S. Le Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 108(1997), 1-35.
3. J. Zhang, T. Ayusawa, M. Minagawa, K. Kinugawa, H. Yamashita, M. Matsuoka, and M. Anpo, Investigations of TiO2 Photocatalysts for the Decomposition of NO in the Flow System: The Role of Pretreatment and Reaction Conditions in the Photocatalytic Efficiency, Journal of Catalysis, 198(2001), 1-8.
4. N. Serpone and E. Pelizzetti, Photocatalysis. Fundementals and Applications. 1 ed. 1989, New York: Wiley.
5. F.-L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying, Applied Catalysis B: Environmental, 68(2006), 74-84.
6. E.M. Levin, C.R. Robbins, and M.H. F., Phase Diagrams for Ceramists, The American Ceramic Society, 76(1975), 4150-4999.
7. U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 48(2003), 53-229.
8. L. Palmisano and A. Sclafani, Heterogeneous Photocatalysis, ed. M. Schiavello. Vol. 3. 1987, New York: John Wiley & Sons Ltd.
9. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemannt, Environmental Applications of Semiconductor Photocatalysis, Chemical reviews, 95(1995), 69-96.
10. Y. Nosaka and M.A. Fox, Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen, Phys. Chem., 88(1988), 1893-1897.
11. Y. Zhu, L. Zhang, W. Yao, and L. Cao, The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl4 as a precursor, Applied Surface Science, 158(2000), 32-37.
12. M. Anpo, H. Yamashita, Y. Ichihashi, and S. Ehara, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts, Journal of Electroanalytical Chemistry, 396(1995), 21-26.
13. H. Bosch and F. Janssen, Formation and control of nitrogen oxides, Catalysis Today, 2(1998), 369-379.
14. A. Fritz and V. Pitchon, The current state of research on automotive lean NOx catalysis, Applied Catalysis B: Environmental, 13(1997), 1-25.
15. H.S. Glick, J.J. Klein, and W. Squire, Single-Pulse Shock Tube Studies of the Kinetics of the Reaction N2+O2<-> 2NO between 2000--3000K, The Journal of Chemical Physics, 27(1957), 850-857.
16. M. Iwamoto, S. Yokoo, K. Sakai, and S. Kagawa, Catalytic decomposition of nitric oxide over copper(II)-exchanged, Y-type zeolites, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 77(1981), 1629 - 1638.
17. M. Iwamoto and H. Hamada, Removal of nitrogen monoxide from exhaust gases through novel catalytic processes, Catalysis Today, 10(1991), 57-71.
18. G. Milazzo, Standard Tables of Standard Electrode Potentials. 1978, Chichester: John Wiley & Sons.
19. H. Courbon and P. Pichat, Room-temperature interaction of NO with ultraviolet-illuminated titanium dioxide, Journal of the Chemical Society, Faraday Transactions 1, 80(1984), 3175 – 3185.
20. N. Negishi, K. Takeuchi, and T. Ibusuki, Surface structure of the TiO2 thin film photocatalyst, Journal of Materials Science, 33(1998), 5789-5794.
21. N. Bowering, G.S. Walker, and P.G. Harrison, Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25, Applied Catalysis B: Environmental, 62(2006), 208-216.
22. G. Munuera, A.R. Gonz&aacute;lez-Elipe, J. Soria, and J. Sanz, Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 3.—Role of H2O2 in photo-desorption of O2, Journal of the Chemical Society, Faraday Transactions 1, 76(1980), 1535 – 1546.
23. M.A. Fox and M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev., 93(1993), 341-357.
24. Z. Ding, G.Q. Lu, and P.F. Greenfield, Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water, J. Phys. Chem. B, 104(2000), 4815-4820.
25. C. Colbeau-Justin, M. Kunst, and D. Huguenin, Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption, Journal of Materials Science, 38(2003), 2429-2437.
26. M. Anpo, H. Yamashita, M. Matsuoka, D.-R. Park, Y.-G. Shul, and S.-E. Park, Design and development of titanium and vanadium oxide photocatalysts incorporated within zeolite cavities and their photocatalytic reactivities, Journal of Industrial Engineering Chemistry, 6(2000), 59-71.
27. M. Kobayashi, R. Kuma, and A. Morita, Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3, Catalysis Letters, 112(2006), 37-44.
28. W. Xu, Y. Yu, C. Zhang, and H. He, Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst, Catalysis Communications, 9(2008), 1453-1457.
29. H. Mishima, K. Hashmoto, T. Ono, and M. Anpo, Selective catalytic reduction of NO with NH3 over natural zeolites and its application to stationary diesel engine exhaust, Applied Catalysis B: Environmental, 19(1998), 119-126.
30. G. Qi, R.T. Yang, and F.C. Rinaldi, Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts, Journal of Catalysis, 237(2006), 381-392.
31. P. Sazama, L. Capek, H. Drobna, Z. Sobalik, J. Dedecek, K. Arve, and B. Wichterlova, Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV-vis study, Journal of Catalysis, 232(2005), 302-317.
32. L. Li, F. Zhang, N. Guan, E. Schreier, and M. Richter, NO selective reduction by hydrogen on potassium titanate supported palladium catalyst, Catalysis Communications, In Press, Corrected Proof.
33. I.D. Lick, A. Carrascull, M. Ponzi, and E.N. Ponzi, The Catalytic Activity of Co/ZrO2 for NO Reduction with Propane in O2 Presence, Catalysis Letters, 89(2003), 179-184.
34. F. Zhang, S. Zhang, N. Guan, E. Schreier, M. Richter, R. Eckelt, and R. Fricke, NO SCR with propane and propene on Co-based alumina catalysts prepared by co-precipitation, Applied Catalysis B: Environmental, 73(2007), 209-219.
35. R. Perez-Hernandez, A. Gomez-Cortes, J. Arenas-Alatorre, S. Rojas, R. Mariscal, J.L.G. Fierro, and G. Diaz, SCR of NO by CH4 on Pt/ZrO2-TiO2 sol-gel catalysts, Catalysis Today, 107-108(2005), 149-156.
36. H. Bosch and F. Janssen, Formation and control of nitrogen oxides, Catalysis Today, 2(1988), 369-379.
37. A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno, and H. Ohuchi, Performance of platinum-group metal catalysts for the selective reduction of nitrogen oxides by hydrocarbons, Applied Catalysis B: Environmental, 2(1993), 71-80.
38. G.R. Bamwenda, A. Ogata, A. Obuchi, J. Oi, K. Mizuno, and J. Skrzypek, Selective reduction of nitric oxide with propene over platinum-group based catalysts: Studies of surface species and catalytic activity, Applied Catalysis B: Environmental, 6(1995), 311-323.
39. R. Burch and P.J. Millington, Selective reduction of nitrogen oxides by hydrocarbons under lean-burn conditions using supported platinum group metal catalysts, Catalysis Today, 26(1995), 185-206.
40. B.H. Engler, J. Leyrer, E.S. Lox, K. Ostgathe, A. Frennet, and J.M. Bastin, Catalytic reduction of nitrogen oxides in diesel exhaust gas, in Studies in Surface Science and Catalysis. 1995, Elsevier. p. 529-547.
41. N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S.-i. Matsumoto, T. Tanizawa, T. Tanaka, S.-s. Tateishi, and K. Kasahara, The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst, Catalysis Today, 27(1996), 63-69.
42. K. Teramura, T. Tanaka, and T. Funabiki, Photoassisted Selective Catalytic Reduction of NO with Ammonia in the Presence of Oxygen over TiO2, Langmuir, 19(2003), 1209-1214.
43. K. Teramura, T. Tanaka, S. Yamazoe, K. Arakaki, and T. Funabiki, Kinetic study of photo-SCR with NH3 over TiO2, Applied Catalysis B: Environmental, 53(2004), 29-36.
44. S. Yamazoe, T. Okumura, K. Teramura, and T. Tanaka, Development of the efficient TiO2 photocatalyst in photoassisted selective catalytic reduction of NO with NH3, Catalysis Today, 111(2006), 266-270.
45. A. Goncalves, J.R. Dom&acute;ınguez, and J. Alvarado, Determination of Pd, Pt and Rh in vehicles escape fumes by GF-AAS and ICP-OES, Talanta, 75(2008), 523-527.
46. Y.-T. Wu, In situ FT-IR Study of Photocatalytic NO and CH4 Reaction on Photocatalysts, in Department of Chemical Engineering. 2007, National Taiwan University.
47. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction. 3rd ed. 2001, New Jersey: Prentice Hall.
48. W.W. Wendlandt and H.G. Hecht, Reflectance Sprectroscopy. 1966, New York: Wiley. 62.
49. J.R. Anderson and K.C. Pratt, Introduction to Characterization and Tesing of Catalysts. 1985, Florida: Academic Press.
50. B. George and P. McIntyre, Analytical Chemistry by Open Learning, Business and Technology Council: John Wiley & Sons.
51. HARRICK, The Praying Mantis, User's Manual. 2003, New York, U.S.: Harrick Scientific Corporation.
52. TELEDYNE, Instruction Manual: Chemiluminescence NO Analyzer Model 200E. 2006, San Diego, U.S.A: Teledyne Instruments.
53. R. Nakamura, A. Imanishi, K. Murakoshi, and Y. Nakato, In-situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions, JOurnal of the American Chemical Society, 125(2003), 7443-7450.
54. A.A. Davydov, Infrared spectroscopy of adsorbed apecies on the surface of transition metal oxides. 1990, New York: John Wiley and Sons.
55. W. Xu, D. Raftery, and J.S. Francisco, Effect of Irradiation Sources and Oxygen Concentration on the Photocatalytic Oxidation of 2-Propanol and Acetone Studied by in Situ FTIR, J. Phys. Chem. B, 107(2003), 4537-4544.
56. I. Nakamura, S. Sugihara, and K. Takeuchi, Mechaism for NO photooxidation over the oxygen-deficient TiO2 powder under visible light irradiation, Chemistry Letters, 11(2000), 1276-1277.
57. J. Valyon and W.K. Hall, Studies of the surface species formed from NO on copper zeolites, Journal of Physical Chemistry, 97(1993), 1204-1212.
58. A.S. Elmi, P. Forzatti, and G. Busca, Mechanism of Selective Methanol Oxidation over Vanadium Oxide-Titanium Oxide Catalysts: A FT-IR and Flow Reactor Study, Journal of Physical Chemistry, 91(1987), 5263-5269.
59. G. Ramis, G. Busca, V. Lorenzelli, and P. Rorzatti, Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase Applied Catalysis, 64(1990), 243-257.
60. Y.T. Cheng, In situ FT-IR studies of photocatalytic NO oxidation on photocatalysts, in Department of Chemical Engineering. 2005, National Taiwan University.
61. L. Osterlund and A. Mattsson. Surface characteristics and electronic structure of photocatalytic reactions on TiO2 and doped TiO2 nanoparticles. 2006. San Diego, CA, United States: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States.
62. R. Nakamura and Y. Nakata, Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles revealed by in situ FTIR absorption and photoluminescence measurements, JOurnal of the American Chemical Society, 126(2004), 1290-1298.
63. H.M. Heise, Analysis of Anesthetic Gas Mixtures of Halothane, Nitrous Oxide and Oxygen by Gas Chromatography, Chromatographia Short Communication, 23(1987), 53-54.
64. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy. 1995: Physical Electronics, Eden Prairie, MN.
65. H.-M. Lin, Photo Reduction of CO2 by optical-fiber reactor, in Department of Chemical Engineering. 2004, National Taiwan University.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36982-
dc.description.abstract本研究探討室溫下以金屬負載的P25光觸媒選擇性光催化還原一氧化氮,並使用丙烷作為還原氣。二氧化鈦光觸媒利用初濕含浸法負載鈀及銠金屬,並使用流動式反應器探討其催化活性。在紫外光(波段350∼500nm)照射下,Pd/TiO2比PdRh/TiO2及Rh/TiO2具有較高的催化活性。研究並發現丙烷吸附在選擇性光催化還原一氧化氮中扮演重要的角色。Pd/TiO2的活性在經過2小時500°C氫氣還原下有顯著的提升。利用原位傅立葉轉換紅外線光譜分析的結果,可推測出一氧化氮及丙烷在金屬負載的二氧化鈦,進行光觸媒催化反應的可能機制。觀察吸附在含鈀觸媒的表面上有N2O,推測其有可能為中間物或副產物。化學氣相層析分析的結果未發現N2O的存在,其可能原因為沒有N2O生成或是其濃度低於氣相層析可偵測的範圍。結果顯示在紫外光照射下,使用Pd/TiO2光觸媒及丙烷還原氣,可以有效的將一氧化氮轉化為無害的氮氣。zh_TW
dc.description.abstractPhoto-assisted selective catalytic reduction of nitric oxide (NO) was studied over a series of metal-loaded P25 at room temperature. Propane was used as a reducing agent. The activities of metal-loaded M (Pd, Rh)/TiO2 photocatalysts, prepared via the incipient wetness impregnation method, were compared using a continuous flow reactor. Under UV (350-500nm) irradiation, Pd/TiO2 showed superior photo activity when compared to PdRh/TiO2 and Rh/TiO2. Propane adsorption on the photocatalyst plays a significant role in photo-SCR reaction to react with adsorbed NO. The activity of the Pd/TiO2 catalyst could be significantly increased after reduction with hydrogen at 500°C for 2hr. A possible reaction mechanism was proposed based on the product species found from IR spectroscopy. Nitrous oxide (N2O) was observed on the surface of catalysts loaded with palladium and could be a reaction intermediate or by-product. However N2O was either not present in the gas phase or its concentration was below the detection limit of gas chromatography. The results indicate that Pd/TiO2 under UV irradiation using propane reducing agent can effectively reduce NO pollutant at room temperature to harmless N2.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:17:30Z (GMT). No. of bitstreams: 1
ntu-97-R95524087-1.pdf: 6953102 bytes, checksum: 41e740a0de0d5343a51075d4ad653c8d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAbstract (English) I
Abstract (Chinese) II
Contents III
List of Figures VI
List of Tables XII
1. Introduction 1
2. Literature Survey 2
2.1 Background of Photocatalysis 2
2.1.1 Introduction to TiO2 2
2.1.2 Semiconductor under Excitation 4
2.2 NOx Reduction 7
2.2.1 Catalytic decomposition 8
2.2.2 Photocatalytic decomposition 10
2.2.3 Selected Catalytic Reduction 13
2.2.4 Photo-assisted selective catalytic reduction 18
3. Experimental 23
3.1 Materials and Apparatus 23
3.1.1 Chemicals 23
3.1.2 Apparatus 24
3.2 Preparation of Photocatalysts 25
3.3 Photocatalyst Characterization 29
3.3.1 X-Ray Diffraction (XRD) 29
3.3.2 UV-Visible Spectrometer 33
3.3.3 Field Emission Scanning Electron Microscopy (SEM) 34
3.3.4 Energy Dispersive Spectrometer (EDS) 35
3.3.5 X-ray Photoelectron Spectroscopy (XPS) 36
3.3.6 BET Surface Area Measurement 36
3.3.7 Fourier Transform Infrared Spectroscopy (FT-IR) 37
3.3.8 Chemiluminescence Nitrogen Oxides Analyzer 40
3.4 Photo-SCR Reaction System 43
3.4.1 Reaction System 43
3.4.2 Photoreactor 45
3.4.3 Photo-assisted SCR of NO 49
4. Results and Discussion 51
4.1 Photo-assisted SCR reaction 51
4.1.1 Blank experiments 51
4.1.2 NO Adsorption 53
4.1.3 Photo-SCR of NOx over MOx/TiO2 56
4.1.4 Photo-SCR of NOx over M/TiO2 66
4.1.5 Effect of light intensity on NOx conversion 72
4.1.6 Photocatalyst deactivation 74
4.2 ex-situ FT-IR Spectroscopy 76
4.3 N2O Detection by Gas Chromatography 85
4.4 Photo-SCR of NOx in the presence of O2 89
4.5 Catalyst Characterization 92
4.5.1 X-ray Diffraction 92
4.5.2 BET 95
4.5.3 UV-Visible Spectroscopy 96
4.5.4 SEM 99
4.5.5 TEM 101
4.5.6 EDS 105
4.5.7 XPS 106
5. Discussion 112
5.1 Reaction mechanism of photo-SCR by propane 112
5.2 Reaction mechanism of photo-SCR by propane in the presence of O2 117
5.3 Reaction rate equation 119
6. Conclusion 123
7. References 124
Appendix 130
Autobiography 135
dc.language.isoen
dc.subjectTiO2zh_TW
dc.subject光催化還原zh_TW
dc.subject丙烷zh_TW
dc.subjectpropaneen
dc.subjectTiO2en
dc.subjectphoto-SCRen
dc.title光催化選擇性還原一氧化氮污染物zh_TW
dc.titlePhoto Selective Catalytic Reduction of NO Pollutanten
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee萬本儒,莊顯成
dc.subject.keyword光催化還原,丙烷,TiO2,zh_TW
dc.subject.keywordphoto-SCR,propane,TiO2,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2008-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
6.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved