Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36963
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲
dc.contributor.authorShiue-Hua Wangen
dc.contributor.author王雪華zh_TW
dc.date.accessioned2021-06-13T15:17:17Z-
dc.date.available2014-08-17
dc.date.copyright2011-08-17
dc.date.issued2011
dc.date.submitted2011-08-11
dc.identifier.citation1. P. L. Dhepe and A. Fukuoka, ' Cellulose Conversion under Heterogeneous Catalysis ', ChemSusChem, 1 (12), 969-975 (2008).
2. A. Baltazar-Y-Jimenez, M. Bistritz, E. Schulz and A. Bismarck, ' Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate ', Compos. Sci. Technol., 68 (1), 215-227 (2008).
3. R. Z. Li, L. Ye and Y. W. Mai, ' Application of plasma technologies in fibre-reinforced polymer composites: A review of recent developments ', Compos. Pt. A-Appl. Sci. Manuf., 28 (1), 73-86 (1997).
4. L. C. Vander Wielen, M. Ostenson, P. Gatenholm and A. J. Ragauskas, ' Surface modification of cellulosic fibers using dielectric-barrier discharge ', Carbohydr. Polym., 65 (2), 179-184 (2006).
5. Y. V. Titova, V. G. Stokozenko and A. I. Maximov, ' Application of underwater discharge for modification of cellulose materials ', IEEE Trans. Plasma Sci., 38 (4), 933-936 (2010).
6. M. Hoogwijk, A. Faaija, R. van den Broek, G. Berndes, D. Gielen and W. Turkenburg, ' Exploration of the ranges of the global potential of biomass for energy ', Biomass Bioenerg., 25 (2), 119-133 (2003).
7. Y. Lin and S. Tanaka, ' Ethanol fermentation from biomass resources: current state and prospects ', Appl. Microbiol. Biotechnol., 69 (6), 627-642 (2006).
8. D. J. Hayes, ' An examination of biorefining processes, catalysts and challenges ', Catal. Today, 145 (1-2), 138-151 (2009).
9. P. McKendry, ' Energy production from biomass (part 1): overview of biomass ', Bioresource Technology, 83 (1), 37-46 (2002).
10. H. P. Yang, R. Yan, H. P. Chen, D. H. Lee and C. G. Zheng, ' Characteristics of hemicellulose, cellulose and lignin pyrolysis ', Fuel, 86 (12-13), 1781-1788 (2007).
11. A. Fukuoka and P. L. Dhepe, ' Sustainable green catalysis by supported metal nanoparticles ', Chem. Rec., 9 (4), 224-235 (2009).
12. E. Sjostrom and E. Sjostrom, 'Wood chemistry: Fundamentals and applications, Second edition ', Academic Press, Inc.; Academic Press Ltd., (1993).
13. S. Deguchi, K. Tsujii and K. Horikoshi, ' Cooking cellulose in hot and compressed water ', Chem. Commun., (31), 3293-3295 (2006).
14. M. Balat, ' Mechanisms of thermochemical biomass conversion processes. Part 2: Reactions of gasification ', Energy Sources Part A-Recovery Util. Environ. Eff., 30 (7), 636-648 (2008).
15. M. Balat, ' Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis ', Energy Sources Part A-Recovery Util. Environ. Eff., 30 (7), 620-635 (2008).
16. T. R. Carlson, G. A. Tompsett, W. C. Conner and G. W. Huber, ' Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks ', Top. Catal., 52 (3), 241-252 (2009).
17. A. Demirbas, ' Mechanisms of liquefaction and pyrolysis reactions of biomass ', Energy Conv. Manag., 41 (6), 633-646 (2000).
18. T. Hosoya, H. Kawamoto and S. Saka, ' Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor ', J. Anal. Appl. Pyrolysis, 83 (1), 71-77 (2008).
19. K. Kato and H. Komorita, ' Pyrolysis of cellulose .V. Isolation and identification of 3-deoxyglycosones produced from D-glucose D-xylose and alpha-cellulose by heating ', Agricultural and Biological Chemistry, 32 (6), 715-720 (1968).
20. H. Kawamoto, S. Saito, W. Hatanaka and S. Saka, ' Catalytic pyrolysis of cellulose in sulfolane with some acidic catalysts ', J. Wood Sci., 53 (2), 127-133 (2007).
21. A. Khelfa, G. Finqueneisel, M. Auber and J. V. Weber, ' Influence of some minerals on the cellulose thermal degradation mechanisms - Thermogravimetic and pyrolysis-mass spectrometry studies ', J. Therm. Anal. Calorim., 92 (3), 795-799 (2008).
22. M. Nishimura, S. Iwasaki and M. Horio, ' The role of potassium carbonate on cellulose pyrolysis ', J. Taiwan Inst. Chem. Eng., 40 (6), 630-637 (2009).
23. P. R. Patwardhan, J. A. Satrio, R. C. Brown and B. H. Shanks, ' Influence of inorganic salts on the primary pyrolysis products of cellulose ', Bioresource Technology, 101 (12), 4646-4655 (2010).
24. J. Piskorz, D. Radlein and D. S. Scott, ' On the mechanism of the rapid pyrolysis of cellulose ', J. Anal. Appl. Pyrolysis, 9 (2), 121-137 (1986).
25. J. Scheirs, C. Camino, M. Avidano and W. Tumiatti, ' Origin of furanic compounds in thermal degradation of cellulosic insulating paper ', J. Appl. Polym. Sci., 69 (13), 2541-2547 (1998).
26. R. K. Sharma, J. B. Wooten, V. L. Baliga, X. H. Lin, W. G. Chan and M. R. Hajaligol, ' Characterization of chars from pyrolysis of lignin ', Fuel, 83 (11-12), 1469-1482 (2004).
27. D. K. Shen and S. Gu, ' The mechanism for thermal decomposition of cellulose and its main products ', Bioresource Technology, 100 (24), 6496-6504 (2009).
28. N. Shimada, H. Kawamoto and S. Saka, ' Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis ', J. Anal. Appl. Pyrolysis, 81 (1), 80-87 (2008).
29. P. T. Williams and P. A. Horne, ' The role of metal-salts in the pyrolysis of biomass ', Renew. Energy, 4 (1), 1-13 (1994).
30. Z. G. Yang, B. G. Zhang, X. Chen, Z. H. Bai and H. X. Zhang, ' Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation ', J. Anal. Appl. Pyrolysis, 81 (2), 243-246 (2008).
31. L. Calvo and D. Vallejo, ' Formation of organic acids during the hydrolysis and oxidation of several wastes in sub- and supercritical water ', Ind. Eng. Chem. Res., 41 (25), 6503-6509 (2002).
32. Z. Y. Ding, M. A. Frisch, L. X. Li and E. F. Gloyna, ' Catalytic oxidation in supercritical water ', Ind. Eng. Chem. Res., 35 (10), 3257-3279 (1996).
33. R. Hashaikeh, Z. Fang, I. S. Butler and J. A. Kozinski, ' Sequential hydrothermal gasification of biomass to hydrogen ', Proc. Combust. Inst., 30 (2), 2231-2237 (2005).
34. A. Kruse and A. Gawlik, ' Biomass conversion in water at 330-410 degrees C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways ', Ind. Eng. Chem. Res., 42 (2), 267-279 (2003).
35. T. Minowa, F. Zhen and T. Ogi, ' Cellulose decomposition in hot-compressed water with alkali or nickel catalyst ', J. Supercrit. Fluids, 13 (1-3), 253-259 (1998).
36. M. Saisu, T. Sato, M. Watanabe, T. Adschiri and K. Arai, ' Conversion of lignin with supercritical water-phenol mixtures ', Energy Fuels, 17 (4), 922-928 (2003).
37. S. Saka and T. Ueno, ' Chemical conversion of various celluloses to glucose and its derivatives in supercritical water ', Cellulose, 6 (3), 177-191 (1999).
38. T. Sakaki, M. Shibata, T. Sumi and S. Yasuda, ' Saccharification of cellulose using a hot-compressed water-flow reactor ', Ind. Eng. Chem. Res., 41 (4), 661-665 (2002).
39. M. Sasaki, Z. Fang, Y. Fukushima, T. Adschiri and K. Arai, ' Dissolution and hydrolysis of cellulose in subcritical and supercritical water ', Ind. Eng. Chem. Res., 39 (8), 2883-2890 (2000).
40. M. Sasaki, B. Kabyemela, R. Malaluan, S. Hirose, N. Takeda, T. Adschiri and K. Arai, ' Cellulose hydrolysis in subcritical and supercritical water ', J. Supercrit. Fluids, 13 (1-3), 261-268 (1998).
41. A. Sinag, S. Gulbay, B. Uskan and M. Canel, ' Biomass decomposition in near critical water ', Energy Conv. Manag., 51 (3), 612-620 (2010).
42. Z. Srokol, A. G. Bouche, A. van Estrik, R. C. J. Strik, T. Maschmeyer and J. A. Peters, ' Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds ', Carbohydr. Res., 339 (10), 1717-1726 (2004).
43. N. Torii, A. Okai, K. Shibuki, T. M. Aida, M. Watanabe, M. Ishihara, H. Tanaka, Y. Sato and R. L. Smith, ' Production of D-glucose from pseudo paper sludge with hydrothermal treatment ', Biomass and Bioenergy, 34 (6), 844-850 (2010).
44. X. Y. Yan, F. M. Jin, K. Tohji, A. Kishita and H. Enomoto, ' Hydrothermal Conversion of Carbohydrate Biomass to Lactic Acid ', Aiche J., 56 (10), 2727-2733 (2010).
45. A. S. Amarasekara and C. C. Ebede, ' Zinc chloride mediated degradation of cellulose at 200 degrees C and identification of the products ', Bioresource Technology, 100 (21), 5301-5304 (2009).
46. N. J. Cao, Q. Xu and L. F. Chen, ' Acid-hydrolysis of cellulose in zinc-chloride solution ', Applied Biochemistry and Biotechnology, 51/52 (1), 21-28 (1995).
47. N. J. Cao, Q. Xu and L. F. Chen, ' Xylan hydrolysis in zinc-chloride solution ', Applied Biochemistry and Biotechnology, 51/52 (1), 97-104 (1995).
48. B. Girisuta, L. Janssen and H. J. Heeres, ' Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid ', Ind. Eng. Chem. Res., 46 (6), 1696-1708 (2007).
49. J. H. Lin, Y. H. Chang and Y. H. Hsu, ' Degradation of cotton cellulose treated with hydrochloric acid either in water or in ethanol ', Food Hydrocolloids, 23 (6), 1548-1553 (2009).
50. T. Marzialetti, M. B. V. Olarte, C. Sievers, T. J. C. Hoskins, P. K. Agrawal and C. W. Jones, ' Dilute acid hydrolysis of Loblolly pine: A comprehensive approach ', Ind. Eng. Chem. Res., 47 (19), 7131-7140 (2008).
51. W. S. L. Mok, M. J. Antal and G. Varhegyi, ' Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose ', Ind. Eng. Chem. Res., 31 (1), 94-100 (1992).
52. A. Orozco, M. Ahmad, D. Rooney and G. Walker, ' Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system ', Process Saf. Environ. Protect., 85 (B5), 446-449 (2007).
53. L. C. Peng, L. Lin, J. H. Zhang, J. P. Zhuang, B. X. Zhang and Y. Gong, ' Catalytic conversion of cellulose to levulinic acid by metal chlorides ', Molecules, 15 (8), 5258-5272 (2010).
54. K. Seri, T. Sakaki, M. Shibata, Y. Inoue and H. Ishida, ' Lanthanum(III)-catalyzed degradation of cellulose at 250 degrees C ', Bioresource Technology, 81 (3), 257-260 (2002).
55. N. Shimada, H. Kawamoto and S. Saka, ' Solid-state hydrolysis of cellulose and methyl alpha- and beta-D-glucopyrano sides in presence of magnesium chloride ', Carbohydr. Res., 342 (10), 1373-1377 (2007).
56. Y. Takeuchi, F. M. Jin, K. Tohji and H. Enomoto, ' Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances ', J. Mater. Sci., 43 (7), 2472-2475 (2008).
57. T. vom Stein, P. Grande, F. Sibilla, U. Commandeur, R. Fischer, W. Leitner and P. D. de Maria, ' Salt-assisted organic-acid-catalyzed depolymerization of cellulose ', Green Chem., 12 (10), 1844-1849 (2010).
58. H. B. Zhao, J. H. Kwak, Y. Wang, J. A. Franz, J. M. White and J. E. Holladay, ' Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study ', Energy Fuels, 20 (2), 807-811 (2006).
59. H. B. Zhao, J. H. Kwak, Z. C. Zhang, H. M. Brown, B. W. Arey and J. E. Holladay, ' Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis ', Carbohydr. Polym., 68 (2), 235-241 (2007).
60. A. Fukuoka and P. L. Dhepe, ' Catalytic conversion of cellulose into sugar alcohols ', Angew. Chem.-Int. Edit., 45 (31), 5161-5163 (2006).
61. N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, Y. Y. Shu, A. L. Stottlemyer and J. G. G. Chen, ' Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts ', Catal. Today, 147 (2), 77-85 (2009).
62. A. Onda, T. Ochi and K. Yanagisawa, ' Selective hydrolysis of cellulose into glucose over solid acid catalysts ', Green Chem., 10 (10), 1033-1037 (2008).
63. C. B. Rasrendra, I. Makertihartha, S. Adisasmito and H. J. Heeres, ' Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions ', Top. Catal., 53 (15-18), 1241-1247 (2010).
64. Y. Sun and J. Y. Cheng, ' Hydrolysis of lignocellulosic materials for ethanol production: a review ', Bioresource Technology, 83 (1), 1-11 (2002).
65. 侯咏德, ' 龍鬚菜之酵素降解 ', 碩士論文, 臺灣大學, (2006).
66. 黃宜瑾, ' 介質研磨對纖維素之酵素水解動力學的影響 ', 碩士論文, 臺灣大學, (2007).
67. T. T. Teeri, ' Crystalline cellulose degradation: New insight into the function of cellobiohydrolases ', Trends Biotechnol., 15 (5), 160-167 (1997).
68. T. Hosoya, H. Kawamoto and S. Saka, ' Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature ', J. Anal. Appl. Pyrolysis, 80 (1), 118-125 (2007).
69. H. Kawamoto, W. Hatanaka and S. Saka, ' Thermochemical conversion of cellulose in polar solvent (sulfolane) into levoglucosan and other low molecular-weight substances ', J. Anal. Appl. Pyrolysis, 70 (2), 303-313 (2003).
70. J. J. Boon, I. Pastorova, R. E. Botto and P. W. Arisz, ' Structural studies on cellulose pyrolysis and cellulose chars by pyms, pygcms, FTIR, NMR and by wet chemical techniques ', Biomass Bioenerg., 7 (1-6), 25-32 (1994).
71. B. M. Kabyemela, T. Adschiri, R. M. Malaluan and K. Arai, ' Kinetics of glucose epimerization and decomposition in subcritical and supercritical water ', Ind. Eng. Chem. Res., 36 (5), 1552-1558 (1997).
72. B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan and K. Arai, ' Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water ', Ind. Eng. Chem. Res., 37 (2), 357-361 (1998).
73. B. Girisuta, L. Janssen and H. J. Heeres, ' A kinetic study on the conversion of glucose to levulinic acid ', Chemical Engineering Research and Design, 84 (A5), 339-349 (2006).
74. P. R. Patwardhan, J. A. Satrio, R. C. Brown and B. H. Shanks, ' Product distribution from fast pyrolysis of glucose-based carbohydrates ', J. Anal. Appl. Pyrolysis, 86 (2), 323-330 (2009).
75. T. M. Aida, Y. Sato, M. Watanabe, K. Tajima, T. Nonaka, Hattori, H. and K. Arai, ' Dehydration Of D-glucose in high temperature water at pressures up to 80 MPa ', J. Supercrit. Fluids, 40 (3), 381-388 (2007).
76. Z. Fang, R. L. Smith, J. A. Kozinski, T. Minowa and K. Arai, ' Reaction of D-glucose in water at high temperatures (410 degrees C) and pressures (180 MPa) for the production of dyes and nano-particles ', J. Supercrit. Fluids, 56 (1), 41-47 (2011).
77. B. M. Kabyemela, T. Adschiri, R. M. Malaluan and H. Ohzeki, ' Rapid and selective conversion of glucose to erythrose in supercritical water ', Ind. Eng. Chem. Res., 36 (12), 5063-5067 (1997).
78. D. Klingler and H. Vogel, ' Influence of process parameters on the hydrothermal decomposition and oxidation of glucose in sub- and supercritical water ', J. Supercrit. Fluids, 55 (1), 259-270 (2010).
79. M. Watanabe, Y. Aizawa, T. Iida, C. Levy, T. M. Aida and H. Inomata, ' Glucose reactions within the heating period and the effect of heating rate on the reactions in hot compressed water ', Carbohydr. Res., 340 (12), 1931-1939 (2005).
80. X. Y. Yan, F. M. Jin, K. Tohji, T. Moriya and H. Enomoto, ' Production of lactic acid from glucose by alkaline hydrothermal reaction ', J. Mater. Sci., 42 (24), 9995-9999 (2007).
81. Z. Fang, T. Minowa, C. Fang, R. L. Smith, H. Inomata and J. A. Kozinski, ' Catalytic hydrothermal gasification of cellulose and glucose ', Int. J. Hydrog. Energy, 33 (3), 981-990 (2008).
82. L. M. J. J. Bozell , D. C.Elliott, Y. Wang, G. G. Neuenscwander, S. W. Fitzpatrick, R. J. Bilski and J. L. Jarnefeld, ' Production of levulinic acid and use as a platform chemical for derived products ', Resour. Conserv. Recycl., 28 (3-4), 227-239 (2000).
83. B. Girisuta, L. Janssen and H. J. Heeres, ' A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid ', Green Chem., 8 (8), 701-709 (2006).
84. M. J. Antal, W. S. L. Mok and G. N. Richards, ' Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature .1. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose ', Carbohydr. Res., 199 (1), 91-109 (1990).
85. B. M. Kabyemela, T. Adschiri, R. M. Malaluan and K. Arai, ' Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics ', Ind. Eng. Chem. Res., 38 (8), 2888-2895 (1999).
86. G. C. A. Luijkx, F. Vanrantwijk and H. Vanbekkum, ' Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2 furaldehyde and D-fructose ', Carbohydr. Res., 242, 131-139 (1993).
87. 陳韋廷, ' 由新鮮龍眼榨汁製造濃縮龍眼汁和龍眼粉之研究 ', 碩士論文, 臺灣大學, (2009).
88. L. W. Kroh, ' Caramelisation in food and beverages ', Food Chem., 51 (4), 373-379 (1994).
89. I. Pons, C. Garrault, J. N. Jaubert, J. Morel and J. C. Fenyo, ' Analysis of aromatic caramel ', Food Chem., 39 (3), 311-320 (1991).
90. P. Tomasik, M. Palasinski and S. Wiejak, in Tipson, R. S. And D. Horton, 1989, pp. 203-278.
91. E. H. Ajandouz, L. S. Tchiakpe, F. Dalle Ore, A. Benajiba and A. Puigserver, ' Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems ', J. Food Sci., 66 (7), 926-931 (2001).
92. D. A. Skoog, F. J. Holler and S. R. Crouch, 'Principles of instrumental analysis ', (2007).
93. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, ' Colorimetric method for determination of sugars and related substances ', Anal. Chem., 28 (3), 350-356 (1956).
94. P. Rao and T. N. Pattabiraman, ' Further-studies on the mechanism of phenol sulfuric-acid reaction with furaldehyde derivatives ', Anal. Biochem., 189 (2), 178-181 (1990).
95. J. Boratynski, ' Colorimetric method for the determination of ketoses using phenol acetone boric-acid reagent (PABR) ', Anal. Biochem., 137 (2), 528-532 (1984).
96. 何金翰, ' 乳牛乾乳後乳腔中短胜肽之種類、分離及生活習性 ', 碩士論文, 中興大學, (2007).
97. 沈振峰, ' 負離子大氣壓離子化法質譜儀於藥物之分析 ', 博士論文, 臺灣大學, (2005).
98. 張瑜玲, ' 利用新的化學方法增進醣類分子在質譜儀中的偵測效率 ', 碩士論文, 臺灣大學, (2009).
99. S. S. Choi and J. C. Kim, ' Influence of alkali metal cation type on ionization characteristics of carbohydrates in ESI-MS ', Bull. Korean Chem. Soc., 30 (9), 1996-2000 (2009).
100. C. H. Stephens, P. M. Whitmore, H. R. Morris and M. E. Bier, ' Hydrolysis of the amorphous cellulose in cotton-based paper ', Biomacromolecules, 9 (4), 1093-1099 (2008).
101. N. B. Cech and C. G. Enke, ' Practical implications of some recent studies in electrospray ionization fundamentals ', Mass Spectrom. Rev., 20 (6), 362-387 (2001).
102. P. Bruggeman and C. Leys, ' Non-thermal plasmas in and in contact with liquids ', J. Phys. D-Appl. Phys., 42 (5), 28 (2009).
103. V. Fascio, R. Wuthrich and H. Bleuler, ' Spark assisted chemical engraving in the light of electrochemistry ', Electrochim. Acta, 49 (22-23), 3997-4003 (2004).
104. S. A. Campbell, V. J. Cunnane and D. J. Schiffrin, ' Cathodic contact glow-discharge electrolysis under reduced pressure ', J. Electroanal. Chem., 325 (1-2), 257-268 (1992).
105. S. K. Sengupta, R. Singh and A. K. Srivastava, ' A study on the origin of nonfaradaic behavior of anodic contact glow discharge electrolysis - The relationship between power dissipated in glow discharges and nonfaradaic yields ', J. Electrochem. Soc., 145 (7), 2209-2213 (1998).
106. Y. Toriyabe, S. Watanabe, S. Yatsu, T. Shibayama and T. Mizuno, ' Controlled formation of metallic nanoballs during plasma electrolysis ', Appl. Phys. Lett., 91 (4), 3 (2007).
107. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, ' Plasma electrolysis for surface engineering ', Surf. Coat. Technol., 122 (2-3), 73-93 (1999).
108. H.-W. Chang and C.-C. Hsu, ' Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior ', Plasma Sources Science and Technology, 20 (4)(2011).
109. Y. Sakiyama, T. Tomai, M. Miyano and D. B. Graves, ' Disinfection of E. coli by nonthermal microplasma electrolysis in normal saline solution ', Appl. Phys. Lett., 94 (16), 3 (2009).
110. M. Sato, T. Ohgiyama and J. S. Clements, ' Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water ', IEEE Trans. Ind. Appl., 32 (1), 106-112 (1996).
111. P. Baroch, V. Anita, N. Saito and O. Takai, ' Bipolar pulsed electrical discharge for decomposition of organic compounds in water ', J. Electrost., 66 (5-6), 294-299 (2008).
112. Y. S. Chen, X. S. Zhang, Y. C. Dai and W. K. Yuan, ' Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution ', Sep. Purif. Technol., 34 (1-3), 5-12 (2004).
113. J. Y. Gong, J. Wang, W. J. Xie and W. M. Cai, ' Enhanced degradation of aqueous methyl orange by contact glow discharge electrolysis using Fe2+ as catalyst ', J. Appl. Electrochem., 38 (12), 1749-1755 (2008).
114. M. A. Malik, A. Ghaffar and S. A. Malik, ' Water purification by electrical discharges ', Plasma Sources Sci. Technol., 10 (1), 82-91 (2001).
115. S. Mededovic and B. R. Locke, ' The role of platinum as the high voltage electrode in the enhancement of Fenton's reaction in liquid phase electrical discharge ', Appl. Catal. B-Environ., 72 (3-4), 342-350 (2007).
116. A. Y. Nikiforov, ' An application of AC glow discharge stabilized by fast air flow for water treatment ', IEEE Trans. Plasma Sci., 37 (6), 872-876 (2009).
117. A. K. Sharma, B. R. Locke, P. Arce and W. C. Finney, ' A preliminary-study of pulsed streamer corona discharge for the degradation of phenol in aqueou-solutions ', Hazard. Waste Hazard. Mater., 10 (2), 209-219 (1993).
118. S. Tomizawa and M. Tezuka, ' Kinetics and mechanism of the organic degradation in aqueous solution irradiated with gaseous plasma ', Plasma Chem. Plasma Process., 27 (4), 486-495 (2007).
119. H. M. Yang and M. Tezuka, ' Plasma-induced complete destruction of tetrachlorophenols in an aqueous solution ', J. Phys. D-Appl. Phys., 44 (15), 7 (2011).
120. J. Hieda, N. Saito and O. Takai, ' Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution ', J. Vac. Sci. Technol. A-Vac. Surf. Films, 26 (4), 854-856 (2008).
121. Y. Ichin, K. Mitamura, N. Saito and O. Takai, ' Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing ', J. Vac. Sci. Technol. A-Vac. Surf. Films, 27 (4), 826-830 (2009).
122. N. Saito, J. Hieda and O. Takai, ' Synthesis process of gold nanoparticles in solution plasma ', Thin Solid Films, 518 (3), 912-917 (2009).
123. R. G. Pierce, G. Padron-Wells and M. J. Goeckner, ' Gas-phase chemistry of pulsed n-hexane discharge ', Plasma Chem. Plasma Process., 29 (1), 1-11 (2009).
124. Y. V. Titova, V. G. Stokozenko and A. I. Maximov, ' Application of plasma-solution treatment for modification of bast fibers ', Surf. Eng. Appl. Electrochem., 45 (1), 16-20 (2009).
125. A. G. Zakharov, A. I. Maximov and J. V. Titova, ' Physicochemical properties of plasma-solution systems and prospects for their use for technology ', Uspekhi Khimii, 76 (3), 260-278 (2007).
126. R. C. Weast, 'CRC handbook of chemistry and physics ', (1988).
127. H. R. Holgate, J. C. Meyer and J. W. Tester, ' Glucose hydrolysis and oxidation in supercritical water ', Aiche J., 41 (3), 637-648 (1995).
128. J. Mao, R. Doane and M. F. Kovacs, ' Separation of acrolein and its possible metablites using different modes of high-performance liquid-chromatography ', J. Liq. Chromatogr., 17 (8), 1811-1819 (1994).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36963-
dc.description.abstract由於在水溶液生成電漿可產生許多不同種類的自由基,如OH、H、O和過氧化氫,可被用來分解有機物。本實驗中,主要是探討水溶液電漿分解纖維素的可能性,並使用高效能液相層析儀(High Performance Liquid Chromatography, HPLC)來分析水溶液中產物的種類及濃度。
在本實驗中,纖維素經過電漿處理後會生成黃色的物質,使得水溶液會變成黃色,且經由高效能液相層析儀鑑定後,發現纖維素可分解成小分子的物質,如葡萄糖(Glucose)、果糖(Fructose)、乙醇酸(Glycolic Acid)、脫水葡萄糖(Levoglucosan)、醋酸(Acetic Acid)、5-羥甲基糠醛(5-Hydroxymethylfurfural, 5-HMF)和一些未知的化合物。為了得到最佳的分解效率,分別改變電解質的化學性(濃度、種類及pH值)及電漿參數。在0.01~0.2 M 範圍中,分解效率會隨著電解質濃度增加而增加;而在不同濃度下不同電解質對於分解效率及產物種類而言各有其特點,其中所使用的電解質有氯化鈉、硝酸鈉、氫氧化納、氯化鋅、硝酸鋅、硫酸鋅、氯化鈣、硝酸鈣、硫酸鈣、氫氧化鈣及鹽酸,在0.01 M下,氫氧化鈣的效率最高,在0.1 M 下則是氯化鋅的整體效率最佳,且只有在氯化鋅及硫酸鋅的環境下能產生脫水葡萄糖;而溶液的pH 值對於產物的顏色及產率也有影響。除了改變溶液性質外,透過施加不同的電壓及電漿模式也會影響效率;對於施加電壓而言會有一個最佳的使用範圍,高於或低於此電壓都會使得效率降低;直流正偏壓、負偏壓及透過交流電所產生的氣泡模式(Bubble Mode)及噴射模式(Jetting Mode)中,透過直流正偏壓所生成的電漿分解纖維素的效率最佳。
zh_TW
dc.description.abstractPlasmas in salt solution are able to generate active species and can be used to decompose organic compounds. In this study, plasmas driven by AC or DC power sources in various saline-solutions are used to decompose cellulose. The solutions used include NaCl, NaNO3, NaOH, Zn(NO3)2, ZnCl2, CaCl2, Ca(NO3)2, and Ca(OH)2. The electrode at which the plasma is ignited is a platinum wire 0.5 mm in diameter covered by a glass tube while the grounding electrode is a bare platinum wire of the same diameter. The plasma voltage and current waveforms are monitored using electrical probes. Optical emission spectrometer is used to monitor the time-averaged emission spectra emanating from the plasma. The conductivity and the pH of the solution in which the plasma is ignited are monitored using commercially available meters. The decomposed products are identified and quantified using high performance liquid chromatography.
It is shown that the plasma is able to effectively decompose cellulose into smaller molecules, such as glucose, fructose, glycolic acid, levoglucosan, 5-HMF, and several unknown products. The decomposition efficiency increases with the salt concentration. When different salt solution is used, it shows significantly different decomposition efficiencies and decomposed products. This observation strongly suggests that the decomposition process using plasmas in salt solution is chemical in nature and obtaining reaction selectivity is highly possible. Preliminary studies show that Ca(OH)2 and ZnCl2 solutions can most effectively decompose cellulose under optimized conditions.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:17:17Z (GMT). No. of bitstreams: 1
ntu-100-R98524070-1.pdf: 6328566 bytes, checksum: d204d96aceb4022bc349f07b96459c9a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
英文摘要 V
目錄 vi
圖目錄 ix
表目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目標 2
第二章 文獻回顧 3
2.1 生質材料 3
2.1.1 生質材料的種類 3
2.1.2 木質纖維素與澱粉 4
2.2 纖維素分解方法 7
2.2.1 水解反應 8
2.2.2 熱裂解法 14
2.2.3 水熱法 24
2.3 醣類分解 31
2.3.1 葡萄糖分解及機制 31
2.3.2 褐變反應 34
2.4 醣類分析方式及原理 38
2.4.1 高效能液相層析儀 38
2.4.2 酚硫酸法原理 40
2.4.3 電噴霧游離質譜儀 40
2.5 水溶液電漿 43
2.5.1 水溶液電漿簡介 43
2.5.2 水溶液電漿的應用 46
2.5.3 電漿在生質方面的應用-前處理 51
第三章 實驗裝置與設備 54
3.1 實驗設備 54
3.2 實驗步驟 57
第四章 結果與討論 64
4.1纖維素對電漿表現的影響 64
4.1.1 光學放射光譜之分析 64
4.1.2 電流之分析 70
4.2 利用水溶液電漿分解纖維素 71
4.2.1 可能機制之比較與分析 71
4.2.2 處理過程的現象及溶液的顏色 75
4.3 主要產物之物種鑑定 81
4.3.1 酚硫酸法之分析 81
4.3.2 高效能液相層析圖譜之分析 86
4.3.3 ESI-MS之分析 90
4.4 直流電正負偏壓對產率之影響 93
4.4.1 高效能液相層析圖譜之研究 93
4.4.2 時間對產率之影響 95
4.4.3 電極距離之研究 103
4.4.4 影響機制 110
4.5 施加電壓對產率之影響 111
4.6 不同電源來源對產率之影響 113
4.6.1交流電對產率之影響 113
4.6.2 交流電整流後對產率之影響 115
4.7 電解質對產率之影響 118
4.7.1 低濃度電解質對產率之研究 118
4.7.2 高濃度電解質對產率之研究 121
4.7.3 溶液pH值的影響 125
4.7.4 分解效率的比較 127
4.8 產物生成機制之探討 129
第五章 結論與未來展望 131
第六章 參考文獻 133
附錄 148
附錄一 標準品高效能液相層析圖譜 148
附錄二 標準品檢量線 151
附錄三 標準品的ESI/MS圖譜 153
附錄四 中英對照 155
dc.language.isozh-TW
dc.title以水溶液電漿分解纖維素之製程研究zh_TW
dc.titleCellulose Degradation by Plasma in Salt Solutionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳乃立,吳嘉文,魏大欽
dc.subject.keyword水溶液電漿,纖維素,分解,高效能液相層析儀,醣類,焦糖化,zh_TW
dc.subject.keywordsolution plasmas,cellulose degradation,HPLC,saccharide,caramelization,en
dc.relation.page157
dc.rights.note有償授權
dc.date.accepted2011-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
6.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved